首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surface tensions at the temperatures of (283.15, 288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and isothermal (vapour + liquid) equilibrium at the temperatures of (288.15, 298.15, and 308.15) K of n-hexane with 1-chlorobutane or 1-chloropentane mixtures have been measured. Surface tension measurements were carried out with a drop volume tensiometer while the (vapour + liquid) equilibrium was obtained using an all-glass dynamic recirculating type still. Several bulk thermodynamic properties of the studied mixtures have been used together with the experimental measurements to analyse the results. Furthermore, a thermodynamic study of surface formation, including interesting properties such as excess surface compositions and excess properties of surface formation, is also presented.  相似文献   

2.
Vapour pressures of (1-chlorobutane  +  1-butanol, or 2-methyl-2-propanol) at several temperatures between T =  278.15 and T =  323.15 K were measured by a static method. Reduction of the vapour pressures to obtain activity coefficients and excess molar Gibbs energies was carried out by fitting the vapour pressure data to the Redlich–Kister equation according to Barker’s method. For (1-chlorobutane  +  2-methyl-2-propanol) azeotropic mixtures with a minimum boiling temperature were observed over the whole temperature range.  相似文献   

3.
The densities of the following: (pentane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), (hexane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), (heptane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), (octane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), were measured at T =  298.15 K by means of a vibrating-tube densimeter. The excess molar volumes VmE, calculated from the density data, are negative for (pentane  +  1-chloropentane, or 1-chlorohexane) and (hexane  +  1-chlorohexane) over the entire range of composition. (Pentane  +  1-chlorobutane), (hexane  +  1-chloropentane) and (heptane  +  1-chlorohexane) exhibit an S-shapedVmE dependence. For all the other systems,VmE is positive. The VmEresults were correlated using the fourth-order Redlich–Kister equation, with the maximum likelihood principle being applied for determining the adjustable parameters.  相似文献   

4.
Isothermal (vapour + liquid) equilibrium data for the ternary mixtures 1-butanol + n-hexane + 1-chlorobutane and 2-butanol + n-hexane + 1-chlorobutane have been studied with a recirculating still at T = 298.15 K. The experimental data were satisfactorily checked for thermodynamic consistency using the method of van Ness. Activity coefficients and excess Gibbs function have been correlated with the Wilson equation. The GE values obtained for the two ternary systems are very similar.  相似文献   

5.
Densities (ρ) and viscosities (η) of aqueous 1-methylpiperazine (1-MPZ) solutions are reported at T = (298.15 to 343.15) K. Refractive indices (nD) are reported at T = (293.15 to 333.15) K, and surface tensions (γ) are reported at T = (298.15 to 333.15) K. Derived excess properties, except excess viscosities (Δη), are found to be negative over the entire composition range. The addition of 1-MPZ reduces drastically the surface tension of water. The temperature dependence of surface tensions is explained in terms of surface entropy (SS) and enthalpy (HS). The measured and derived properties are used to probe the microscopic liquid structure of the bulk and surface of the aqueous amine solutions.  相似文献   

6.
《Fluid Phase Equilibria》2006,245(1):32-36
New experimental densities and surface tensions for n-nonane + 1-hexanol at 288.15, 298.15 and 308.15 K are reported. Densities were measured with an Anton Paar DMA 4500 densimeter, and surface tensions using a Lauda TVT2 automated tensiometer, which uses the principle of the pending drop volume. The experimental data of pure liquids and mixtures have been used to calculate excess molar volumes and surface tension deviations of n-nonane + 1-hexanol as a function of mole fractions. A comparative study of these properties together with those available in the literature for the n-alkane + 1-alkanol mixtures has been performed. In addition, the magnitude of these experimental quantities is discussed in terms of the nature and type of intermolecular interactions in binary mixtures.  相似文献   

7.
8.
Densities, viscosities, refractive indices, and surface tensions of the ternary system (2-propanol + tetrahydropyran + 2,2,4-trimethylpentane) at T = 303.15 K and its constituent binary systems (2-propanol + tetrahydropyran, 2-propanol + 2,2,4-trimethylpentane, and tetrahydropyran + 2,2,4-trimethylpentane) at T = (293.15, 303.15, 313.15, and 323.15) K were measured at atmospheric pressure. Densities were determined using a vibrating-tube densimeter. Viscosities were measured with an automatic microviscometer based on the rolling-ball principle. Refractive indexes were measured using a digital Abbe-type refractometer. Surface tensions were determined by the Wilhelmy-plate method. From these data, excess molar volumes, deviations in viscosity, deviations in refractive index, and deviations in surface tension were calculated. The results for the binary and ternary systems were fitted to the Redlich–Kister equation and the variable-degree polynomials in terms of compositions, respectively. The experimental and calculated quantities are used to study the nature of mixing behaviour between mixture components.  相似文献   

9.
Refractive indices of binary mixtures formed by a cyclic ether (tetrahydrofuran or tetrahydropyran) and each of the isomeric chlorobutanes (1-chlorobutane, 2-chlorobutane, 1-chloro-2-methylpropane and 2-chloro-2-methylpropane) have been measured at two temperatures, 298.15?K and 313.15?K. From experimental data, refractive index deviations and molar refractions have been calculated. Furthermore, several common mixing rules have been used to predict refractive indices of the mixtures from their experimental densities reported previously.  相似文献   

10.
Densities ρ, speeds of sound u, and refractive indices nD were measured from T = (278.15 to 343.15) K. Dynamic viscosities η were measured from T = (293.15 to 323.15) K. Surface tensions σ were determined from T = (288.15 to 313.15) K. The physical properties data were measured at atmospheric pressure. The coefficients of thermal expansion αp of the ionic liquids were calculated from the experimental values of the density at several temperatures. The Parachor method was used to predict the densities, the refractive indices, and the surface tensions of the ionic liquids, and a comparison between experimental and predictive values was made at T = 298.15 K.  相似文献   

11.
Surface tensions and refractive indices were measured for (lithium bromide  +  water  +  1,3-propanediol), which can be proposed as a new potential working fluid in air-cooled absorption chillers. The mass ratio of lithium bromide to 1,3-propanediol is fixed at 3.5 : 1, an optimal value for avoiding crystallization problems. The experimental temperature ranged from 298.2 K to 323.2 K, and the lithium bromide mass fraction up to 0.659. Both the data of surface tension and refractive index were successfully correlated with simple polynomial equations with average absolute deviations (a.a.d.) of 0.189 and 0.032 per cent, respectively.  相似文献   

12.
Experimental surface tensions for binary mixtures (1,2-ethandiol + water), (1,2-ethandiol + acetonitrile), and (acetonitrile + water) at temperatures of 283.15 K, 298.15 K, and 308.15 K and the ternary mixture (1,2-ethandiol/water/acetonitrile) at 298.15 K have been measured with the Du Noüy ring tensiometer. The surface tension of the above mentioned binary and ternary systems were correlated with empirical and thermodynamic based models. The methods of Pando et al. and Ku et al. were used to correlate the ternary surface tension data. The Fu et al., Kalies et al. and Wang et al. models were also applied to predict surface tension in the ternary system. The mean average absolute deviations obtained from the comparison of experimental and calculated surface tension values for ternary system with three models are less than 2.4%, which leads to concluding that these models show a good accuracy in different situations in comparison with other predictive equations.  相似文献   

13.
The densities of (heptane + 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane) were measured at the temperatures (308.15, 318.15, and 328.15) K by means of a vibrating-tube densimeter. The excess molar volumes, VmE, calculated from the density data, along with our previous data(1) determined at T=298.15 K for the same systems, provide the temperature dependence of VmE in the temperature range of 298 to 328 K. The VmE results were correlated using the fourth-order Redlich–Kister equation, with the maximum likelihood principle applied for the determination of the adjustable parameters. It was found that the deviations from ideal behaviour (both positive and negative) in the systems studied increase with increasing temperature.  相似文献   

14.
This contribution is devoted to the experimental characterization of interfacial tensions of a representative group of binary mixtures pertaining to the (ethanol + linear hydrocarbon) series (i.e. octane, decane, dodecane, and tetradecane). Experimental measurements were isothermically performed using a maximum differential bubble pressure technique, which was applied over the whole mole fraction range and over the temperature range 298.15 K < T/K < 318.15 K.Experimental results show that the interfacial tensions of (ethanol + octane or decane) negatively deviate from the linear behavior and that sharp minimum points on concentration, or aneotropes, are observed for each isotherm. The interfacial tensions of (ethanol + dodecane or tetradecane), in turn, are characterized by combined deviations from the linear behavior, and inflecting behavior observed on concentration for each isotherm. The experimental evidence also shows that these latter mixtures are close to exhibit aneotropy.For the case of (ethanol + octane or decane) mixtures, aneotropy was clearly induced by the similarity of the interfacial tension values of the constituents. The inflecting behavior of the interfacial tensions of (ethanol + dodecane or tetradecane), in turn, was observed in the vicinity of the coordinates of the critical point of these mixtures, thus pointing to the fact that the quasi-aneotropic singularity that affects these mixtures was provoked by the proximity of an immiscibility gap of the liquid phase.Finally, the experimental data of interfacial tensions were smoothed with the Scott–Myers expansion, from which it is possible to conclude that the observed aneotropic concentrations weakly depend on temperature for all the analyzed mixtures.  相似文献   

15.
Densities (ρ) for binary systems of (1,2,4-trimethylbenzene, or 1,3,5-trimethylbenzene + propyl acetate, or butyl acetate) were determined at four temperatures (298.15, 303.15, 308.15, and 313.15) K over the full mole fraction range. The excess molar volumes (VE) calculated from the density data show that the deviations from ideal behaviour in the systems (all being positive, excepting 1,2,4-trimethylbenzene + butyl acetate system) become more positive with the temperature increasing. Surface tensions (σ) of these binary systems were measured at the same temperatures (298.15, 303.15, 308.15, and 313.15) K by the pendant drop method, the surface tension deviations (δσ) for all system are negative, and decrease with the temperature increasing. The VE and δσ are fitted to the Redlich–Kister polynomial equation. Surface tensions were also used to estimate surface entropy (Sσ) and surface enthalpy (Hσ).  相似文献   

16.
The vapour pressures of binary (cyclohexanone + 1-chlorobutane, + 1,1,1-trichloroethane) mixtures were measured at the temperatures of (298.15, 308.15, and 318.15) K. The vapour pressures vs. liquid phase composition data have been used to calculate the excess molar Gibbs free energies GE of the investigated systems, using Barker’s method. Redlich–Kister, Wilson, UNIQUAC, and NRTL equations, taking into account the vapour phase imperfection in terms of the 2-nd virial coefficient, have represented the GE values. No significant difference between GE values obtained with these equations has been observed.  相似文献   

17.
Experimental isothermal (vapour + liquid) equilibrium (VLE) data are reported for the binary mixture containing 1-butyl-3-methylimidazolium iodide ([bmim]I) + 1-butanol at three temperatures: (353.15, 363.15, and 373.15) K, in the range of 0 to 0.22 liquid mole fraction of [bmim]I. Additionally, refractive index measurements have been performed at three temperatures: (293.15, 298.15 and 308.15) K in the whole composition range. Densities, excess molar volumes, surface tensions and surface tension deviations of the binary mixture were predicted by Lorenz–Lorentz (nD-ρ) mixing rule. Dielectric permittivities and their deviations were evaluated by known equations. (Vapour + liquid) equilibrium data were correlated with Wilson thermodynamic model while refractive index data with the 3-parameters Redlich–Kister equation by means of maximum likelihood method. For the VLE data, the real vapour phase behaviour by virial equation of state was considered. The studied mixture presents S-shaped abatement from the ideality. Refractive index deviations, surface tension deviations and dielectric permittivity deviations are positive, while excess molar volumes are negative at all temperatures and on whole composition range. The VLE data may be used in separation processes design, and the thermophysical properties as key parameters in specific applications.  相似文献   

18.
《Fluid Phase Equilibria》2006,239(2):146-155
This work reports the measured density, ρ, and viscosity, η, values of liquid mixtures of tetrahydrofuran (1) + 1-chlorobutane (2) + 2-butanol (3) at temperatures of 283.15, 298.15 and 313.15 K over a range of mole fractions and atmospheric pressure. Excess molar volume, VE, viscosity deviations, Δη, and excess free energies of activation of viscous flow, ΔG*E, have been calculated from experimental data and fitted to Cibulka, Singh et al. and Nagata and Sakura equations. The results were analyzed in terms of the molecular interaction between the components of the mixtures. Excess molar volumes and viscosity deviations were predicted from binary contributions using geometrical solution models, Tsao and Smith; Jacob and Fitzner; Kholer; Rastogi et al.; Radojkovic et al. Finally, experimental results are compared with those obtained by applying group-contribution method proposed by Wu.  相似文献   

19.
The solubility of 4-chloro-2,5-dimethoxynitrobenzene (CDMB) and 4-chloro-2,5-dimethoxyaniline (CDMA) in methanol, ethanol, xylene and toluene was measured over the temperatures range from (278 to 338) K by the dynamic method using a laser monitoring observation technique. The solubility in all solvents increased with temperature and the greatest solubility of both systems was obtained in toluene. The Wilson and the NRTL models were applied to correlate the experimental results. The root-mean-square deviations for the system of (CDMB + solvent) ranged from T = (0.11 to 0.34) K and (0.08 to 0.33) K calculated by the Wilson and the NRTL models, respectively, while for the system of (CDMA + solvent) the root-mean-square deviations ranged from T = (0.11 to 0.32) K and (0.14 to 0.33) K. The melting points and enthalpies of fusion of CDMA and CDMB were determined by differential scanning calorimetry (DSC). Toluene was found to be the preferred solvent for the reduction of CDMB to CDMA from the point of view of reaction and product separation  相似文献   

20.
This research investigated the efficiency of nanosized ZnO in the catalytic ozonation of 4-chloro-2-nitrophenol and determined the effect of pH on heterogeneous catalytic ozonation. Use of ozone with ZnO catalyst leads to conversion of 98.7% of 4-chloro-2-nitrophenol during 5 min. In addition, it was found that in ZnO catalytic ozonation, the degradation efficiency of 4-chloro-2-nitrophenol was higher at low pH conditions (pH 3.0) than high pH (pH 7–9). This result was not in accordance with ozonation alone, following which higher pH had positive effect on the degradation of 4-chloro-2-nitrophenol. During the catalytic ozonation of 4-chloro-2-nitrophenol, an increase of nitrate ions in water sample solution was observed. At pH = 3, the concentration of nitrate formed during nano-ZnO catalytic ozonation was 7.08 mg L−1 and the amount of total organic carbon was 54.9% after 30 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号