首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat capacity of water in the form of hexagonal ice was measured between T = 0.5 K and T = 38 K using a semi-adiabatic calorimetric method. Since heat capacity data below T = 2 K have never been measured for water, this study presents the lowest measured values of the specific heat of water to date. Fits of the data were used to generate thermodynamic functions of water at smoothed temperatures between 0.5 K and 38 K. Both our experimental heat capacities and calculated enthalpy increments agree well with previously published values and thus supplement other studies well.  相似文献   

2.
The heat capacity of polycrystalline germanium disulfide α-GeS2 has been measured by relaxation calorimetry, adiabatic calorimetry, DSC and heat flux calorimetry from T = (2 to 1240) K. Values of the molar heat capacity, standard molar entropy and standard molar enthalpy are 66.191 J · K?1 · mol?1, 87.935 J · K?1 · mol?1 and 12.642 kJ · mol?1. The temperature of fusion and its enthalpy change are 1116 K and 23 kJ · mol?1, respectively. The thermodynamic functions of α-GeS2 were calculated over the range (0 ? T/K ? 1250).  相似文献   

3.
Squalane is being recommended as a secondary reference material for viscometry at moderate to high pressure and at moderate viscosity. As part of this work, a correlation has been developed for atmospheric pressure (Comuñas et al., 2013) [12]. Here we report new experimental high pressure viscosities for squalane (176 data points obtained for temperatures (293.15 to 363.15) K, at pressures up to 350 MPa with a maximum viscosity of 745 mPa · s). These have been determined with four different falling-body viscometers as well as a quartz crystal resonator viscometer. A preliminary high pressure viscosity correlation for squalane is proposed, based on our new data. At pressures up to 350 MPa, this correlation provides an absolute average deviation of 1.5% with a maximum absolute deviation of 8.9%. Comparison is made between the different instruments. In addition, we have also considered the validity of a thermodynamic scaling model.  相似文献   

4.
The low-temperature heat capacity of NiAl2O4 and CoAl2O4 was measured between T = (4 and 400) K and thermodynamic functions were derived from the results. The measured heat-capacity curves show sharp anomalies peaking at around T = 7.5 K for NiAl2O4 and at T = 9 K for CoAl2O4. The exact cause of these anomalies is unknown. From our results, we suggest a standard entropy for NiAl2O4 at T = 298.15 K of (97.1 ± 0.2) J · mol?1 · K?1 and for CoAl2O4 of (100.3 ± 0.2) J · mol?1 · K?1.  相似文献   

5.
6.
7.
8.
9.
10.
11.
(Liquid + liquid) equilibrium (LLE) data for {water + acrylic acid + (1-butanol, or 2-butanol, or 1-pentanol)} at T = 293.2 K, T = 303.2 K, and T = 313.2 K and atmospheric pressure (≈95 kPa) were determined by Karl Fischer titration and densimetry. All systems present type I binodal curves. The size of immiscibility region changes little with an increase in temperature, but increases according to the solvent, following the order: 2-butanol < 1-butanol < 1-pentanol. Values of solute distribution and solvent selectivities show that 1-pentanol is a better solvent than 1-butanol or 2-butanol for acrylic acid removal from water solutions. Quality of data was ascertain by Hand and Othmer-Tobias equations, giving R2 > 0.916, mass balance and accordance between tie lines and cloud points. The NRTL model was used to correlate experimental data, by estimating new energy parameters, with root mean square deviations below 0.0053 for all systems.  相似文献   

12.
13.
The solubility measurements of sodium dicarboxylate salts; sodium oxalate, malonate, succinate, glutarate, and adipate in water at temperatures from (278.15 to 358.15 K) were determined. The molar enthalpies of solution at T = 298.15 K were derived: ΔsolHm (m = 2.11 mol · kg?1) = 13.86 kJ · mol?1 for sodium oxalate; ΔsolHm (m = 3.99 mol · kg?1) = 14.83 kJ · mol?1 for sodium malonate; ΔsolHm (m = 2.45 mol · kg?1) = 14.83 kJ · mol?1 for sodium succinate; ΔsolHm (m = 4.53 mol · kg?1) = 16.55 kJ · mol?1 for sodium glutarate, and ΔsolHm (m = 3.52 mol · kg?1) = 15.70 kJ · mol?1 for sodium adipate. The solubility value exhibits a prominent odd–even effect with respect to terms with odd number of sodium dicarboxylate carbon numbers showing much higher solubility. This odd–even effect may have implications for the relative abundance of these compounds in industrial applications and also in the atmospheric aerosols.  相似文献   

14.
15.
Densities of binary liquid mixtures of N-ethylformamide (NEF) with tetrahydrofuran (THF), 2-butanone (B), and ethylacetate (EA) were measured at temperatures from (293.15 to 313.15) K and at atmospheric pressure over the whole composition range. Excess molar volumes, VE, have been obtained from values of the experimental density and were fitted to the Redlich–Kister polynomial equation. The VE values for all three mixtures are negative over the entire composition and temperature ranges. The VE values become more negative as the temperature increases for all binary mixtures studied. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes, apparent molar volumes, partial molar excess volumes and excess thermal expansions have been calculated.  相似文献   

16.
Density (ρ), refractive index (nD) and speed of sound (u) values are measured for the binary mixture of 1-butyl-3-methylimidazolium tetrafluoroborate and N-octyl-2-pyrrolidone over the entire range of mole fraction at temperatures from T = (298.15 to 323.15) K under atmospheric pressure. Using the basic experimental data, various acoustic and excess thermodynamic parameters are calculated and are discussed in terms of molecular interactions between the present investigated binary system. The excess values are fitted to Redlich–Kister polynomial equation to estimate the binary coefficients and standard deviation between the experimental and calculated values. Further, the molecular interactions in the binary mixture system are analysed using the experimental FT-IR spectrum recorded at room temperature.  相似文献   

17.
Solubility of proline–leucine dipeptide, in water and in aqueous sodium chloride solutions, was measured at T = (288.15, 298.15, 308.15 and 313.15) K as a function of electrolyte concentration m = (0.1, 0.25, 0.5, 0.75 and 1) mol · kg−1 of water. Solubility data has been evaluated from density measurements using a vibrating tube densimeter. It has been observed that sodium chloride renders the dipeptide proline–leucine more soluble in water. Salting-in coefficients and standard free energies of transfer of proline–leucine, from water to aqueous sodium chloride solutions, have been calculated from the solubility data. Standard enthalpies and entropies of transfer have also been estimated and interpreted in terms of electrostatic and hydrophobic perturbed domains in the hydration shells of the dipeptide and of the cation and anion of the salt, as a function of temperature and salt concentration.  相似文献   

18.
19.
20.
Densities (ρ) for binary systems of (1,2,4-trimethylbenzene, or 1,3,5-trimethylbenzene + propyl acetate, or butyl acetate) were determined at four temperatures (298.15, 303.15, 308.15, and 313.15) K over the full mole fraction range. The excess molar volumes (VE) calculated from the density data show that the deviations from ideal behaviour in the systems (all being positive, excepting 1,2,4-trimethylbenzene + butyl acetate system) become more positive with the temperature increasing. Surface tensions (σ) of these binary systems were measured at the same temperatures (298.15, 303.15, 308.15, and 313.15) K by the pendant drop method, the surface tension deviations (δσ) for all system are negative, and decrease with the temperature increasing. The VE and δσ are fitted to the Redlich–Kister polynomial equation. Surface tensions were also used to estimate surface entropy (Sσ) and surface enthalpy (Hσ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号