首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
We construct an entangled quantum heat engine (EQHE) based on two two-spin systems with Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction. By applying the explanations of heat transferred and work performed at the quantum level in Kieu’s work [Phys. Rev. Lett. 93, 140403 (2004)], the basic thermodynamic quantities, i.e., heat transferred, net work done in a cycle and efficiency of EQHE are investigated in terms of DM interaction and concurrence. The validity of the second law of thermodynamics is confirmed in the entangled system. It is found that there is a same efficiency for both antiferromagnetic and ferromagnetic cases, and the efficiency can be controlled in two manners: (1) only by spin-spin interaction J and DM interaction D; (2) only by the temperature T and concurrence C. In order to obtain a positive net work, we need not entangle all qubits in two two-spin systems and we only require the entanglement between qubits in a two-spin system not be zero. As the ratio of entanglement between qubits in two two-spin systems increases, the efficiency will approach infinitely the classical Carnot one. An interesting phenomenon is an abrupt transition of the efficiency when the entanglements between qubits in two two-spin systems are equal.  相似文献   

2.
The pairwise entanglement between neighboring spins in a general mixed-spin chain with arbitrary spins S and 1/2 is investigated in the thermodynamical limit. The entanglement is witnessed by the magnetic susceptibility which determines a characteristic temperature for an entangled thermal state. The characteristic temperature is nearly proportional to the interaction J and the mixed-spin S. The bound of negativity is obtained on the basis of the magnetic susceptibility. It is found that the macroscopic magnetic properties are affected by the quantum entanglement in the real solids.  相似文献   

3.
We investigate the joint effects of phase decoherence,Dzyaloshinskii-Moriya(DM) interaction and inhomogeneity of the external magnetic field(b) on dense coding in a two-qubit anisotropic Heisenberg XY Z spin chain.Analytical expressions are obtained for the dense coding capacity.It is found that valid dense coding is always possible with this model when the system is initially prepared in the maximum entangled state.Moreover,optimal dense coding can be implemented for this initial state as long as the mean spin-spin coupling constant J + of the XY plane is larger than b and the DM interaction despite the intrinsic decoherence.Non-maximal entangled initial states are found to be undesirable for dense coding with this model.  相似文献   

4.
Yue Zhou 《Optics Communications》2008,281(20):5278-5281
The Berry phase of a bipartite system described by a Heisenberg XXZ model driven by a one-site magnetic field is investigated. The effect of the Dzyaloshinski-Moriya (DM) anisotropic interaction on the Berry phase is discussed. It is found that the DM interaction affects the Berry phase monotonously, and can also cause sudden change of the Berry phase for some weak magnetic field cases.  相似文献   

5.
This paper mainly investigates the effects of different Dzyaloshinskii-Moriya (DM) anisotropic antisymmetric interactions on thermal entanglement and teleportation of one-qubit state in both the standard and non-standard protocols as well as the partial teleportation of an entangled state via a two-qubit Heisenberg XXZ spin chain in the presence of external magnetic fields. The dependency of the thermal entanglement and average fidelity on various system parameters is analyzed. The interplay of the different parameters on the teleportation is discussed. The DM interaction is found to be effective for the thermal entanglement in the spin chain both with and without external magnetic fields. However, it turned out to be destructive for the teleportation in the standard protocol, whereas is found constructive for single qubit teleportation when the spin chain with the z-direction parameters is used as the channel in the non-standard protocol. Moreover, the results show that, for teleporting one-qubit state, the antiferromagnetic (AFM) chain is the only qualified candidate in the standard protocol, while both the AFM and ferromagnetic (FM) chains with the parameters along the z-axis are all suitable in the non-standard protocol when the parameters are chosen appropriately. For the partial teleportation of entanglement, both the AFM and FM chains are eligible as long as the appropriate combinations of parameters are chosen. In addition, the comparison of the effects of the same, fixed x- and z-component parameters of the DM interaction (Dx and Dz) on teleportation is presented.  相似文献   

6.
Quantum teleportation via the entangled channel composed of a two-qubit Heisenberg XY Z model with Dzyaloshinski-Moriya (DM) interaction in the presence of intrinsic decoherence has been investigated. We find that the initial state of the channel plays an important role in the teleported state and the average fidelity of teleportation. When the initial channel is in the state |ψ 1 (0) = a|00 + b|11 , the average fidelity is equal to 1/3 constantly, which is independent of the DM interaction and the intrinsic decoherence effect. But when the channel is initially in the state |ψ 2 (0) = c|01 + d|10 , the average fidelity is always larger than 2/3. Moreover, under a certain condition, the average fidelity can be enhanced by adjusting the DM interaction, and the intrinsic decoherence leads to a suppression of the fluctuation of the average fidelity.  相似文献   

7.
We study the thermal entanglement in the two-qubit Heisenberg XXZ model with the Dzyaloshinskii-Moriya (DM) interaction, and teleport an unknown state using the model in thermal equilibrium state as a quantum channel. The effects of DM interaction, including Dx and Dz interaction, the anisotropy and temperature on the entanglement and fully entangled fraction are considered. What deserves mentioning here is that for the antiferromagnetic case, the Dx interaction can be more helpful for increasing the entanglement and critical temperature than Dz, but this cannot for teleportation.  相似文献   

8.
9.
A theoretical scheme is introduced to generate entangled network via Dzyaloshinskii-Moriya (DM) interaction. The dynamics of entanglement between different nodes, which is generated by direct or indirect interaction, is investigated. It is shown that, the direction of (DM) interaction and the locations of the nodes have a sensational effect on the degree of entanglement. The minimum entanglement generated between all the nodes is quantified. The upper and lower bounds of the entanglement depend on the direction of DM interaction, and the repetition of the behavior depends on the strength of DM. The generated entangled nodes are used as quantum channel to perform quantum teleportation, where it is shown that the fidelity of teleporting unknown information between the network members depends on the locations of the members.  相似文献   

10.
We propose a method for entangling a system of two-level atoms in photonic crystals. The atoms are assumed to move in void regions of a photonic crystal. The interaction between the atoms is mediated either via a defect mode or via a resonant dipole-dipole interaction. We show that these interactions can produce pure entangled atomic states. We analyze the problem with parameters typical for currently existing photonic crystals and Rydberg atoms and we show that the atoms can emerge from photonic crystals in entangled states. Depending on the linear dimensions of the crystal we estimate that a pair of atoms entangled in a photonic crystal can be separated by tens of centimeters. Receive 11 June 1999 and Received in final form 4 October 1999  相似文献   

11.
We analyze the time evolution of mixed state ρ0 in a dissipative channel, characteristic of a decay constant κ, by virtue of the elegant properties of entangled state representation 〈η|. We find that the matrix element of the mixed state ρ(t) at time t in 〈η| representation is proportional to that of the initial ρ0 in the decayed entangled state 〈ηe-κt| representation, accompanying with a Gaussian damping factor . Thus we have a new insight about the nature of the dissipative process.  相似文献   

12.
We investigate the quantum phase transition (QPT) and thermal entanglement in the two-qubit Ising model in an inhomogeneous magnetic field, and the DM interaction between the two lattices is considered. The results show the QPT highly relates to the magnetic intensity B and DM parameter D, by controlling the DM interaction D and external magnetic B we can change the positions of QPT points and the level spacing. Moreover, the QPT is closely related to thermal entanglement, when the QPT happens the ground state always changes between entanglement state and disentanglement state. The thermal entanglement highly depends on the system’s temperature T, DM intensity D and external magnetic field B. When T is lower, the entanglement can exhibit a platform-like region. By modulating the parameters D and B, the entanglement can be controlled and the entanglement switch can be realized.  相似文献   

13.
With the introduction of Dzyaloshinskii-Moriya (DM) interaction, dynamics of the remote entanglement in one-dimensional Ising chains is investigated. It is found that the DM interaction can excite the remote entanglement from an initial Néel state. For a given strength of DM interaction, the concurrence between the end spins oscillates and decreases simultaneously with the increase of the chain’s length, and drops to zero at a critical length. For the chains with two and three spins, it is very interesting that the dynamics of the staggered magnetization (or the chiral parameter) can be used to qualitatively estimate the evolution of the remote concurrence between the end spins. At last, we discuss the generation of W state from the Ising chain with DM interactions, and it is obtained that W state can only be prepared in the three-qubit and four-qubit chains with a specific strength of DM interaction.  相似文献   

14.
邹琴  胡小勉  刘金明 《物理学报》2015,64(8):80302-080302
通过求解Milburn方程, 研究了内禀消相干条件下包含Dzyaloshinskii-Moriya (DM) 相互作用的两量子比特Heisenberg自旋系统实现的量子密集编码最佳传输容量的演化特性, 分析了不同方向DM相互作用、不同初态、各向异性以及内禀消相干因子等参数对最佳编码容量的影响. 研究表明: 初态的选择对系统密集编码最佳传输容量的影响很大, 不同类型初态下密集编码容量的依赖参数不完全相同; 当系统初态处于c|01>+ d|10> 形式的非最大纠缠时, 引入较弱的DM相互作用z分量可提高最佳编码容量; 相位消相干可抑制最佳编码容量的涨落并使其在长时间演化下趋于稳定. 研究还发现: 内禀消相干下, 通过选取合适的最大纠缠初态, 系统密集编码的最佳传输容量能够保持理想极大值2; 而且无论引入哪个方向的DM相互作用, 基于两量子比特Heisenberg自旋系统的最佳编码容量总可优于经典通信的传输容量.  相似文献   

15.
The process of resonant interaction of light with two-level atoms in the absence of relaxation is considered. For a special form of initial conditions, simple and exact solutions are found that describe coherent processes leading to the appearance of many-particle entangled W-class states. These processes can be used for preparation and transformation of entangled states, in particular, for problems of quantum memory and generation of entangled atomic chains.  相似文献   

16.
We investigate the anisotropic Heisenberg XXZ spin chain that possesses Dzyaloshinskii–Moriya (DM) interaction and discuss the behavior characteristics of the thermal quantum correlation (thermal quantum discord and thermal quantum entanglement) in the inhomogeneous magnetic field that is manipulated by sinusoidal wave. The results indicate that the DM interaction strengthens the thermal correlation such that the stronger the DM interaction is, the more obvious it strengthens. We can control the thermal correlation through externally adding an inhomogeneous magnetic field that a relative stable range can be formed where the thermal quantum correlation is almost foreign to the coupling coefficient of z-direction spin, thereby the thermal quantum correlation is controlled and enhanced.  相似文献   

17.
We present an explicit generalized protocol for probabilistic teleportation of an arbitrary N-qubit GHZ entangled state via only one non-maximally two-qubit entangled state. Without entanglement concentration, using standard Bell-state measurement and classical communication one cannot teleport the state with unit fidelity and unit probability. We show that by properly choosing the measurement basis it is possible to achieve unity fidelity transfer of the state. Compared with Gordon et al’s protocol [G. Gordon, G. Rigolin, Phys. Rev. A 73 (2006) 042309], this protocol has the advantage of transmitting much less qubits and classical information for teleporting an arbitrary N-qubit GHZ state.  相似文献   

18.
Use of a biharmonic laser pumping for preparation of pure and entangled multiexciton states in dimers and tetramers of resonantly interacting fluorescent particles is analysed. Special emphasis is given to the preparation of all possible pure exciton states and their maximally entangled Bell states. The general results are illustrated using as an example the pair and quartet centres of neodymium ions in calcium fluoride (M- and N-centres), where all necessary experimental information concerning the interactions and decoherence is available, and experimental preparation of Bell vacuum-single exciton and vacuum-biexciton states has been recently demonstrated. These results can be easily rescaled for the cases of quantum dots and dye molecules. Numerical results are compared with the analytical results obtained for a particular case of the biharmonic excitation of dimers. Excellent agreement between these approaches is demonstrated.  相似文献   

19.
Nguyen Ba An 《Physics letters. A》2008,372(21):3778-3783
In this work we devise a scheme to teleport a type of unknown M-quNit state using only a single non-maximally entangled quNit-pair as the quantum channel. The fidelity is one while the success probability is less than one and depends on N but not on M. The scheme requires M−1 ancillary quNits and 1 qubit at the receiver's and the receiver should be capable of performing some quNit-quNit/qubit operations. The classical message that the teleporter must announce consists only of 2 Nits, though the full set of his/her measurement outcome is as huge as M+1 Nits.  相似文献   

20.
In this paper, the entanglement in a mixed-spin (1/2, 3/2) Heisenberg XXZ model with Dzyaloshinskii-Moriya (DM) interaction in an inhomogeneous external magnetic field is studied. We not only calculate the ground-state entanglement but also investigate the behaviors of quantum phase transition following the changes of DM interaction and nonuniform magnetic field. More importantly, we note that the DM interaction improves the critical magnetic field B c , the critical temperature T c and broadens the region of entanglement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号