首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Synergy is often defined as the creation of a whole that is greater than the sum of its parts. It is found at all levels of organization in physics, chemistry, biology, social sciences, and the arts. Synergy occurs in open irreversible thermodynamic systems making it difficult to quantify. Negative entropy or negentropy ( ) has been related to order and complexity, and so has work efficiency, information content, Gibbs Free Energy in equilibrium thermodynamics, and useful work efficiency in general ( ). To define synergy in thermodynamic terms, we use the quantitative estimates of changes in and in seven different systems that suffer process described as synergistic. The results show that synergistic processes are characterized by an increase in coupled to an increase in . Processes not associated to synergy show a different pattern. The opposite of synergy are dissipative processes such as combustion where both and decrease. The synergistic processes studied showed a relatively greater increase in compared to opening ways to quantify energy—or information—dissipation due to the second law of thermodynamics in open irreversible systems. As a result, we propose a precise thermodynamic definition of synergy and show the potential of thermodynamic measurements in identifying, classifying and analysing in detail synergistic processes. © 2016 Wiley Periodicals, Inc. Complexity 21: 235–242, 2016  相似文献   

2.
This article investigates the problem of reliable mixed control for discrete‐time interval type‐2 (IT2) fuzzy model‐based systems via static output‐feedback (SOF) control method. The number of fuzzy rules and the membership functions for the SOF controller are different from those for the plant. A sufficient criterion of reliable stability with mixed performance is derived for the closed‐loop system with sensor failure. The SOF controller is designed for two different cases (known sensor failure case and unknown sensor failure case) to guarantee the reliable stability with mixed performance. Moreover, novel criteria are presented to obtain the optical performance for the closed‐loop system. Finally, an example is used to verify the effectiveness of the proposed design scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 74–88, 2016  相似文献   

3.
An exploratory study is made on the dynamics of the map defining the Mandelbrot set endowed with memory (m) of past iterations, that is, , . © 2014 Wiley Periodicals, Inc. Complexity 21: 84–96, 2016  相似文献   

4.
This article addresses the issue of robust sampled‐data control for a class of uncertain mechanical systems with input delays and linear fractional uncertainties which appear in all the mass, damping, and stiffness matrices. Then, a novel Lyapunov–Krasovskii functional is constructed to obtain sufficient conditions under which the uncertain mechanical system is robustly, asymptotically stable with disturbance attenuation level about its equilibrium point for all admissible uncertainties. More precisely, Schur complement and Jenson's integral inequality are utilized to substantially simplify the derivation of the main results. In particular, a set of sampled‐data controller is designed in terms of the solution of certain linear matrix inequalities that can be solved effectively using available MATLAB software. Finally, a numerical example with simulation result is provided to show the effectiveness and less conservativeness of the proposed sampled‐data control scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 19–29, 2015  相似文献   

5.
This article addresses the problem of fault‐tolerant sampled‐data mixed and passivity control for a class of stochastic system with actuator failures, where the plant is modeled as a continuous‐time one and the control inputs are implemented as discrete‐time signals. Sufficient conditions for the reliable sampled‐data mixed and passivity performance control law is established for the considered systems by constructing an appropriate Lyapunov–Krasovskii functional together with the Newton–Leibniz formula and free‐weighting matrix technique. More precisely, linear matrix inequality based sampled‐data methodology is employed to design the mixed and passivity formation controller to reject the impact of the formation changes being treated as disturbances. Simulation studies are performed based on the flight control model to verify the stability, performance, and effectiveness of the proposed design strategy. © 2015 Wiley Periodicals, Inc. Complexity 21: 420–429, 2016  相似文献   

6.
Lei Su  Hao Shen 《Complexity》2016,21(6):246-259
This article is concerned with the fault‐tolerant mixed /passive synchronization problem for chaotic neural networks by sampled‐data control scheme. The objective is focused on the design of a reliable controller such that the mixed /passivity performance level of the resulting synchronization error system is ensured in the presence of actuator failures. A time‐dependent Lyapunov functional and an improved reciprocally convex approach combined with a novel integral inequality are applied to optimize the availability of the information on the actual sampling pattern. Then, some sufficient conditions of mixed /passivity performance analysis for the synchronization error systems are derived. A desired reliable sampled‐data controller is designed by solving the optimization problems. Finally, to demonstrate the effectiveness of the proposed method, a practical chaotic neural networks is provided. © 2015 Wiley Periodicals, Inc. Complexity 21: 246–259, 2016  相似文献   

7.
This article is concerned with the nonfragile filtering for wireless‐networked systems with energy constraint. To achieve the energy‐efficient goal, the local measurement is first sampled by nonuniform sampling, then we only choose one measurement to transmit it to the remote filter. In the filter design, the random occurring filter gain variation problem is taken into account. A new stochastic switched system model is presented to capture the nonuniform sampling, the measurement size reduction, and the random filter gain phenomena. Based on the switched system approach, stochastic system analysis, and Lyapunov stability theory, a sufficient condition is presented such that the filtering error system is exponentially stable in the mean‐square sense and a prescribed performance level is also guaranteed. The effectiveness of the proposed new method is illustrated by a simulation example. © 2015 Wiley Periodicals, Inc. Complexity 21: 79–89, 2016  相似文献   

8.
This article addresses the decentralized output feedback control for discrete‐time large‐scale nonlinear systems. The considered large‐scale system contains several subsystems with nonlinear interconnection and time‐varying delay, and Takagi–Sugeno model is used to represent each nonlinear subsystem. We aim at designing a decentralized piecewise fuzzy memory dynamic‐output‐feedback (DOF) controller that guarantees the stabilization and performance of the resulting closed‐loop control system. First, we propose a model transformation that reformulates the problem of decentralized output feedback control into the stability analysis with input–output form. Then, we introduce a piecewise Lyapunov–Krasovskii functional, where all Lyapunov matrices are not necessarily positive definite. By combining with the scaled small gain theorem, the less conservative solution to the problem of decentralized piecewise fuzzy memory DOF controller design for the considered system is derived in terms of linear matrix inequalities. The advantage of the proposed method is finally validated using two numerical examples. © 2016 Wiley Periodicals, Inc. Complexity 21: 268–288, 2016  相似文献   

9.
This article investigates the control problem for polynomial fuzzy discrete‐time systems. Signal quantization is considered in this article. To deal with this issue, a logarithmic quantizer is adopted to quantize the control signal. First, a novel method is first proposed to model polynomial fuzzy discrete‐time systems and handle the quantized control problem of the systems. Second, based on Lyapunov‐stability theory, sufficient conditions are obtained in terms of sum of squares to guarantee the asymptotical stability of the systems and satisfy a performance. Finally, a simulation example is given to illustrate the effectiveness of the proposed results. © 2014 Wiley Periodicals, Inc. Complexity 21: 325–332, 2015  相似文献   

10.
This article presents the general case‐study of our previous works regarding generalized Boussinesq equations [17, 18, 19], that focus on application of various subordinate methods where are applied to construct more general exact solutions of the coupled Boussinesq equations. In this article, the ‐expansion method is applied on coupled Boussinesq equations. Our work is motivated by the fact that the ‐expansion method provides not only more general forms of solutions but also periodic, solitary waves, and rational solutions. The method appears to be easier and faster by means of a symbolic manipulation program. © 2016 Wiley Periodicals, Inc. Complexity 21: 151–155, 2016  相似文献   

11.
This article is concerned with the problem of finite‐time synchronization control for a class of discrete‐time nonlinear chaotic systems under unreliable communication links. Our aim is to design a delayed feedback controller such that the resulting synchronization error system is stochastically finite‐time bounded with a guaranteed performance level over a finite time interval. Some sufficient conditions for the solvability of the above problem are established. A delayed feedback control scheme involving constrained information about the past state is presented. Finally, the Fold chaotic system is used to demonstrate the effectiveness of our proposed approach. © 2014 Wiley Periodicals, Inc. Complexity 21: 138–146, 2015  相似文献   

12.
Opinion dynamics under the influence of the contrarian deterministic effect and human mobility on the two‐dimensional lattice is studied. In the model, the opinion is a binary variable and some shortcuts are added with the adding probability Ps. At each time step, each agent with shortcuts is chosen as the mobile one with the mobility probability Pm and moves to one of his immobile neighbors along shortcuts randomly. Then, the immobile agents update their opinions based on the majority rule with pf, which is the Fermi function of the interaction noise T due to the contrarian deterministic effect. We find that some appropriate interaction noise T enhances the formation of community around Tc. And human mobility enhances the formation of community when , where Tc is equal to the average degree and independent of the network size N and the mobility probability Pm through the theoretical and numerical analysis. Furthermore, we also find that the system with larger degree and the self‐feedback of agent have stronger robustness in the opinion formation with the contrarian deterministic effect. © 2014 Wiley Periodicals, Inc. Complexity 20: 43–49, 2015  相似文献   

13.
We construct (resp. ) index one current graphs with current group such that the current graphs have different underlying graphs and generate nonisomorphic orientable (resp. nonorientable) quadrangular embeddings of the complete graph , (resp. ).  相似文献   

14.
Interval minors of bipartite graphs were recently introduced by Jacob Fox in the study of Stanley–Wilf limits. We investigate the maximum number of edges in ‐interval minor‐free bipartite graphs. We determine exact values when and describe the extremal graphs. For , lower and upper bounds are given and the structure of ‐interval minor‐free graphs is studied.  相似文献   

15.
In this article, synchronization problem of master–slave system with phase‐type semi‐Markovian switching is investigated via sliding mode control scheme. By utilizing a supplementary variable technique and a plant transformation, the master–slave semi‐Markovian switching system can be equivalently expressed as its associated Markovian switching system. Then an integral sliding surface is constructed to guarantee stochastic synchronization of master–slave semi‐Markovian switching system, and the suitable controller is synthesized to ensure that the trajectory of the closed‐loop error system can be driven onto the prescribed sliding mode surface. Finally, numerical simulations are presented to show the effectiveness of the proposed sliding‐mode design scheme. © 2015 Wiley Periodicals, Inc. Complexity 21: 430–441, 2016  相似文献   

16.
This article determines the set of the circular flow numbers of regular graphs. Let be the set of the circular flow numbers of graphs, and be the set of the circular flow numbers of d‐regular graphs. If d is even, then . For it is known 6 that . We show that . Hence, the interval is the only gap for circular flow numbers of ‐regular graphs between and 5. Furthermore, if Tutte's 5‐flow conjecture is false, then it follows, that gaps for circular flow numbers of graphs in the interval [5, 6] are due for all graphs not just for regular graphs.  相似文献   

17.
A graph is antimagic if there is a one‐to‐one correspondence such that for any two vertices , . It is known that bipartite regular graphs are antimagic and nonbipartite regular graphs of odd degree at least three are antimagic. Whether all nonbipartite regular graphs of even degree are antimagic remained an open problem. In this article, we solve this problem and prove that all even degree regular graphs are antimagic.  相似文献   

18.
The current study is focused on the state estimator design for the discrete‐time complex networks with sensor failures and randomly varying nonlinearities. Bernoulli process is adopted to describe the randomly varying nonlinearities, and the norm‐bounded uncertain model is used to deal with the sensor failures. Then, a set of sufficient conditions are provided to guarantee that the estimation error system is stochastically stable with the prescribed property. Then, using the linear matrix inequality method, the estimator gains are obtained. Finally, the effectiveness of the proposed new design method is illustrated through a numerical example. © 2016 Wiley Periodicals, Inc. Complexity 21: 507–517, 2016  相似文献   

19.
Quasi‐Hermitian varieties in are combinatorial generalizations of the (nondegenerate) Hermitian variety so that and have the same size and the same intersection numbers with hyperplanes. In this paper, we construct a new family of quasi‐Hermitian varieties. The isomorphism problem for the associated strongly regular graphs is discussed for .  相似文献   

20.
We examine the transmission of entities from the peripheries of scale‐free networks toward their centers when the nodes of the network have finite processing capabilities. We look at varying network utilization, U and find that clogging of the network sets in after a threshold value has been exceeded, and that the congestion sets in at the downstream nodes (those nearer to the collector) having large numbers of upstream neighbors. Investigation of the question of the degree of correlation of several characteristics of scale‐free networks (such as the average path length to the collector <l(min)> and the average clustering coefficient ) with the dynamics of centripetal flow in them reveals a negative answer: any correlation is indirect and will manifest in the number of producer nodes (which dictate the effective heaviness of the flow) and the interconnectedness of the feeder nodes, those nodes which are immediate neighbors of the collector node. An examination of reinforcement strategies shows dramatic improvements in both the finishing rate, and the average total transmission time, when the more centrally‐placed nodes are reinforced first, showing that the entities spend a large amount of their lifetime waiting in line at those nodes (which constitute the bottlenecks in the network) compared to the nodes in the periphery. Our results reinforce the importance of a network's hubs and their immediate environs, and suggest strategies for prioritizing elements of a network for optimization. © 2014 Wiley Periodicals, Inc. Complexity 21: 283–295, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号