首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 231 毫秒
1.
A wide study of the compounds and procedures mostly used to determine the electroosmotic flow (EOF) and micelle elution times has been done in seven different micellar electrokinetic chromatography (MEKC) systems. These systems are formed from mixtures of an aqueous buffer with the surfactants sodium dodecyl sulfate, lithium dodecyl sulfate, lithium perfluorooctane sulfonate, sodium cholate, sodium deoxycholate, tetradecyltrimethylammonium bromide and hexadecyltrimethylammonium bromide. The solvation parameter model has been used to evaluate the usefulness of the compounds studied as EOF or micellar markers in each of the seven MEKC systems. It is demonstrated that methanol, acetonitrile and formamide are the best EOF markers, and that dodecanophenone is the best micellar marker.  相似文献   

2.
A general micellar electrokinetic chromatographic (MEKC) strategy for the impurity profiling of drugs was developed involving a sodium dodecyl sulfate (SDS) and a cetyltrimethylammonium bromide (CTAB) MEKC system. With this combination, in principle, each sample component passes the detector in at least one of the two MEKC systems provided that separation buffers of the same pH are used in both systems. In order to select the proper MEKC systems, the electroosmotic flow (EOF) and micelle migration time (t(mc)) were determined for separation buffers of several pH values, containing various amounts of surfactant and organic modifier. The selectivity of the MEKC systems was studied using a mixture of compounds with a wide range of physico-chemical properties. The final selection of two adequate MEKC systems for this approach was based on the requirements that the t(mc) (i.e., analysis time) of both systems was below 20 min and that the t(mc)/t(eof) ratio was above 3 or 2 for the SDS and CTAB system, respectively. Furthermore, the systems should provide high efficiency, exhibit differences in selectivity and use moderate concentrations of modifier and surfactant, so that, if needed, further optimization is possible. The selected MEKC systems contained 60 mM SDS or 10 mM CTAB, respectively, in a phosphate buffer (pH 7.5) with 10% acetonitrile. Some test compounds with extreme mobilities were used to demonstrate the suitability of the MEKC approach to detect each component of a sample. The potential of the proposed MEKC combination for impurity profiling was demonstrated by the analysis of fluvoxamine with several impurities at the 0.1% level.  相似文献   

3.
Two different buffer systems for the separation of 12 aromatic hydrophobic sulfonates by micellar electrokinetic chromatography (MEKC) were developed. The following buffer systems were used: aqueous phosphate buffers containing either cetyltrimethylammonium bromide (CTAB) or sodium dodecyl sulfate (SDS). Eleven aromatic sulfonates were simultaneously separated in less than 35 min employing 20 mM phosphate buffer, pH 7.0 containing 50 mM SDS and 10% of acetonitrile.  相似文献   

4.
The solvation parameter model has been applied to the characterization of micellar electrokinetic chromatographic (MEKC) systems with mixtures of sodium dodecyl sulfate and Brij 35 as surfactant. The variation in MEKC surfactant composition results in changes in the coefficients of the correlation equation, which in turns leads to information on solute-solvent and solute-micelle interactions. Since the same solvation model can be used to describe many biological processes, particular MEKC surfactant compositions can be selected that model the solute-solvent interactions of some of these processes. Two different MEKC systems have been selected to model the solute-solvent interactions of two processes of biological interest (octanol-water partition and tadpole narcosis).  相似文献   

5.
A micellar electrokinetic chromatography (MEKC) method has been developed that can evaluate the purity of samples generated in combinatorial chemistry libraries. This method uses an open tube capillary (27 cm x 50 microm) along with a run buffer composed of sodium dodecyl sulfate (SDS), hydroxypropyl-beta-cyclodextrin, and sodium tetraborate coupled with UV detection. Neutral compounds and compounds that were insoluble in aqueous buffers could be analyzed under these conditions in approximately 3 min. The concentration of SDS and the concentration of hydroxypropyl-beta-cyclodextrin effected the separation. The affect on selectivity resulting from the addition of an organic modifier to the run buffer was examined. The low background absorbency of the run buffer made for easy detection of compounds that absorbed at low UV wavelengths. The quick analysis time made this suitable for analysis of combinatorial chemistry samples.  相似文献   

6.
Kuo CH  Lee SS  Chang HY  Sun SW 《Electrophoresis》2003,24(6):1047-1053
Micellar electrokinetic chromatography (MEKC) was used to separate twelve lignan compounds originating from Phyllanthus plants. To increase the reliability of peak identification, two micellar systems, the sodium dodecyl sulfate (SDS) and sodium deoxycholate (SDC) systems, were investigated. Because of the high lipophilicity of the lignan analytes, tetrahydrofuran was added to the SDS micellar system to increase its separating ability. In contrast to SDS system, no organic solvent was needed with SDC micelles. Both micellar systems gave a satisfactory separation within a reasonable analysis time. On considering accuracy for quantitation, the SDS method was validated and then used to determine the content of the lignans in two Phyllanthus plants. The selectivity (elution order of the lignans) was significantly different between the SDS and SDC micellar systems. Retention in SDC-MEKC seemed to be dominated by the hydrophobicity of the lignan solutes, while in SDS-MEKC, retention was greatly influenced by hydrogen bonding interactions.  相似文献   

7.
Summary Coelectroosmotic micellar electrokinetic chromatography (coelectroosmotic MEKC) has been investigated for the separation of twelve aromatic sulfonate compounds. The advantage of this method is that it combines the efficient separation characteristic of MEKC and the short analysis time of the coelectroosmotic mode. MEKC was performed with either cetyltrimethylammonium bromide (CTAB) or polyethylene glycol dodecyl ether (Brij 35) surfactants as pseudostationary phases and 2-propanol as organic modifier. The electroosmotic Flow (EOF) was reversed by adding two types of EOF modifier, an alkylammonium salt (cetyltrimethylammonium bromide, CTAB) or a cationic polyelectrolyte (hexadimetrine bromide, HDB). The surfactant concentration, applied voltage, and temperature were optimized, the influence of 2-propanol on the MEKC resolution of the compounds was studied. The effect of the osmotic modifier on the separation was also investigated.  相似文献   

8.
The potential of micellar electrokinetic chromatography (MEKC) for the profiling of cocaine samples is described. An MEKC system containing sodium dodecyl sulfate (SDS) and methanol was optimized using a test mixture of cocaine, its common impurities (benzoylecgonine, norcocaine, tropacocaine, and trans-cinnamoylcocaine), and several degradation products. The effect of pH, percentage modifier, and concentration surfactant on the separation has been investigated. The optimal separation buffer for cocaine samples consisted of 75 mM SDS, 17.5% methanol, and 25 mM borate (pH 8.3) and was well suited to separate components of diverse polarity in one run. Various cocaine seizures have been analyzed with the MEKC system and their signatures were compared. The electrokinetic chromatograms obtained were characteristic, and differences and similarities among the samples could easily be observed. Several impurities were identified in the samples by means of migration times and comparison of recorded and library UV spectra. The composition of the samples was determined semiquantitatively using relative corrected peak areas.  相似文献   

9.
Akbay C  Gill NL  Agbaria RA  Warner IM 《Electrophoresis》2003,24(24):4209-4220
An achiral monomeric surfactant (sodium 10-undecenyl sulfate, SUS) and a chiral surfactant (sodium 10-undecenoyl L-leucinate, SUL) were synthesized and polymerized individually to form poly-SUS and poly-SUL. These surfactants were then copolymerized at various molar ratios to produce a variety of copolymerized surfactants (CoPSs), possessing both achiral (sulfate) and chiral (leucinate) head groups. The CoPSs, poly-SUS, poly-SUL, and sodium dodecyl sulfate were characterized using several analytical techniques. The aggregation numbers of the polymeric surfactants and the partial specific volumes were determined by the use of fluorescence quenching and density measurements, respectively. These polymeric surfactants were investigated as novel pseudostationary phases in micellar electrokinetic chromatography (MEKC) for the separation of chiral and achiral solutes. Solute hydrophobicity was found to have major influence on the MEKC retention of alkyl phenyl ketones. In contrast, hydrogen-bonding ability of benzodiazepines is the major factor that governs their retention, but hydrophobicity has an insignificant effect on MEKC retention of benzodiazepines.  相似文献   

10.
We examined polymers of sodium 11-acrylamidoundecanoate [poly(Na 11-AAU)] with a very high molecular mass (>10(6)) for their potential use as a pseudo-stationary phase in micellar electrokinetic capillary chromatography (MEKC). Size-exclusion chromatography and capillary electrophoresis studies reveal that the polymers are highly charged, and have a densely packed chain structure. For aromatic compounds, the polymeric surfactant showed significantly different selectivity than sodium dodecyl sulfate (SDS). It was suggested that one molecule of poly(Na 11-AAU) forms one micelle. The structural stability of this pseudo-stationary phase permitted its use with relatively high percentages of organic modifiers in the buffer medium, allowing the separation of highly hydrophobic compounds which are difficult to analyze by conventional MEKC with SDS.  相似文献   

11.
The separation of the six pyrethrin esters in a technical pyrethrum extract (Riedel-de-Ha?n, Cresent Chemical Co. Inc. Hauppauge, NY, USA) by micellar electrokinetic chromatography (MEKC) using both sodium dodecyl sulfate (SDS) and a polymerized surfactant as pseudo-stationary phases has been investigated and optimized. Parameters such as pH, SDS and polymerized sodium N-undecyl sulfate (poly-SUS) concentration, type and concentration of background electrolyte and organic modifier, as well as the acetonitrile/water ratio in the sample were studied to optimize the resolution, efficiency, and analysis time. An optimized separation of the six pyrethrin esters was achieved in 25 min with 25 mM Tris, buffered at pH 9, containing 30 mM SDS, 25% (v/v) acetonitrile, and an equal volume ratio of acetonitrile/water sample matrix at a voltage of 25 kV. The use of 0.5% (w/v) poly-SUS enhanced resolution of the pyrethrin esters and shortened the total analysis time from 25 to 20 min, compared to the SDS mediated separation. The optimized MEKC results are compared to the HPLC separation of these esters and show an improvement in efficiency and total analysis time.  相似文献   

12.
Téllez A  Fuguet E  Rosés M 《Electrophoresis》2007,28(20):3712-3721
A method to optimize the separation in micellar EKC (MEKC) of mixtures of acidic compounds as a function of two parameters, pH and concentration of sodium dodecyl sulfate, has been developed. The method considers the prediction of the retention time and the shape of the peaks. The retention time is predicted from the retention factor model and the peak shape by a polynomically modified Gaussian function that considers peak width, asymmetry factor, and height. An algorithm to calculate the global resolution of the separation at any experimental pH and [SDS] has been applied. This algorithm provides a 3-D resolution map to easily detect the areas in which resolution for the separation of the compounds is maximum. Initial experiments to fit the models have been performed with a set of ten phenolic compounds with different hydrophobicities and pK(a) values, and therefore, expected to behave in a different way with changes of pH and surfactant concentration. The experiments encompassed a pH range from 6.7 to 11.1, and a sodium dodecyl sulfate concentration range from 40 to 80 mM. Through the proposed methodology, chromatograms have been simulated at different pH and [SDS] very accurately. Furthermore, the resolution at any experimental point within the studied ranges have been also calculated, giving an optimum resolution value at pH 6.7 and [SDS] = 72 mM.  相似文献   

13.
A selective MEKC method was developed for the analysis of didanosine in bulk samples. Successful separation of didanosine from 13 of its potential impurities, derived from the various synthetic preparation procedures, was achieved. As CZE gave poor separation selectivity, MEKC was preferable. The use of EKC allowed achievement of the separation in a significantly shorter time than conventional HPLC. An anionic long-chain surfactant, lithium dodecyl sulfate (LiDS), was used as the pseudostationary phase and sodium tetraborate buffer as the aqueous phase. In order to obtain the optimal conditions and to test the method robustness, a central composite response surface modeling experiment was performed. The optimized electrophoretic conditions include the use of an uncoated fused-silica capillary with a total length of 40 cm and an ID of 50 microm, a BGE containing 40 mM sodium tetraborate and 110 mM LiDS at pH 8.0, an applied voltage of 18.0 kV, and the capillary temperature maintained at 15 degrees C. The method was found to be robust. The parameters for validation such as linearity, precision, and sensitivity are also reported. Three commercial bulk samples were analyzed with this system.  相似文献   

14.
The limited peak capacity of neutral compounds in micellar electrokinetic chromatography (MEKC) causes peak overlap in a simple 38-compound sample that is predicted by statistical-overlap theory (SOT). The low-concentration sample was prepared in-house from several compound classes to span the entire migration-time range and was resolved partially in a pH=7 phosphate buffer containing 50 mM sodium dodecyl sulfate. Peaks, singlets, doublets, and other multiplets were identified on the basis of known migration times and were counted at 13 voltages spanning 4 – 26 kV. These numbers agreed well with predictions of a simple SOT based on the assumption of an inhomogeneous Poisson distribution of migration times. Because the dispersion theory of MEKC is simple, the standard deviations of single-component peaks were modeled theoretically. As part of a new way to implement SOT, probability distributions of the numbers of peaks, singlets, and so on, were computed by Monte Carlo simulation. These distributions contain all theoretical information on peak multiplicity predictable by SOT and were used to evaluate the agreement between experiment and theory. The peak capacity of MEKC was calculated numerically and substituted into the simplest equations in SOT, affirming that peak overlap arises from limited peak capacity.  相似文献   

15.
Oligomeric procyanidins are potent antioxidant polyphenols of potential interest as disease-preventing agents. Their efficiency depends on the size and composition of their oligomeric structures. The mean degree of polymerization of these compounds is usually estimated by thiolysis with thiol-alpha-toluene followed by analysis using high-performance liquid chromatography (HPLC). We show the development of a mixed micellar electrokinetic chromatography (MEKC) method for the separation of the major components obtained after thiolysis with cysteamine (catechins and their cysteamine conjugates). MEKC studies using sodium dodecyl sulfate (SDS as pseudostationary phase led to long migration times, e.g., with 100 mM SDS, at pH 7, the solutes were separated in about 40 min), while the use of sodium cholate (SC) produced an elution window relatively short. Using a mixed micellar SC-SDS system (50 mM phosphate at pH 7 containing 40 mM SC and 10 mM SDS), it is possible to separate these compounds in less than 15 min. The proposed method is useful to separate the major components of the thiolysate in effluents from food processing (e.g., skins and seeds from grape and apple) considered as potential procyanidin sources.  相似文献   

16.
Micellar electrokinetic capillary chromatography (MEKC) has been developed as a promising method for the determination of lignans in plant samples. The separation conditions have been optimized with respect to the different parameters including sodium dodecyl sulfate (SDS) and acetonitrile concentration, pH of the background electrolyte, separation voltage, and capillary temperature. The background electrolyte consisting of 40 mM SDS and 35% acetonitrile in 10 mM tetraborate buffer (pH 9.3) was found to be the most suitable electrolyte for this analysis. The applied voltage of 28 kV (positive polarity) and the capillary temperature 25 degrees C gave the best separation of lignans. The interday reproducibility of the peak areas and the migration times was below 2.0%. The results of MEKC analyses were compared with those obtained by capillary electrochromatography (CEC) and reversed-phase high-performance liquid chromatography (RP-HPLC). The possibilities of using this method for the determination of lignans in drug and in serum samples were also tested.  相似文献   

17.
Ràfols C  Poza A  Fuguet E  Rosés M  Bosch E 《Electrophoresis》2002,23(15):2408-2416
The experimental conditions that produce analyte peak splitting in micellar electrokinetic capillary chromatography (MEKC) have been systematically investigated. The system studied was a neutral phosphate buffer and sodium dodecyl sulfate (SDS) micelles as pseudostationary phase. A number of analytes showing a wide variety of hydrophobicity values and several organic solvents as sample diluents have been tested. Peak splitting phenomena are mainly due to the presence of organic solvent in the sample solution. They increase with the hydrophobicity of the analyte and decrease with the increase of the surfactant concentration. When hydrophobic compounds are analyzed the suggested ways to avoid split peaks are: (i) the use of 1-propanol or 1-butanol as sample diluent instead of methanol or acetonitrile or (ii) the use of high concentration of surfactant in the separating solution when the analyte must be dissolved in pure methanol or acetonitrile.  相似文献   

18.
A comparison of separations conducted in sodium dodecyl sulfate (SDS) and SDS modified with Brij 35 indicates that selectivity, in Micellar Electrokinetic Chromatography (MEKC), is governed by the composition of the micellar phase. Beyond selectivity optimization, resolution may be improved by increasing efficiency or decreasing electroosmotic flow. Of these approaches, increasing capillary length (to improve efficiency) should be a more time effective means of improving separation.  相似文献   

19.
Huang HY  Chiu CW  Chen YC  Yeh JM 《Electrophoresis》2005,26(4-5):895-902
Microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatograpy (MEKC) were compared for their abilities to separate and detect ten similar benzophenones, which are commonly used as UV filters in various plastic and cosmetic products. Sodium dodecyl sulfate (SDS) concentration and column temperature rarely affected separation resolution for MEEKC, but separation of benzophenones could be improved by changing the SDS concentration and column temperature for MEKC. Buffer pH and ethanol (organic modifier) were found to markedly influence the separation selectivity for both MEEKC and MEKC systems. In addition, a higher electric voltage improved the separation efficiency without a noticeable reduction in separation resolution for MEEKC, whereas it caused a poor separation resolution for the MEKC system.  相似文献   

20.
The possibility of determining eight adrenocorticotropic steroid hormones (cortisol, cortisone, corticosterone, 11-dehydrocorticosterone, 17-hydroxyprogesterone, 11-deoxycortisol, and progesterone) by micellar electrokinetic chromatography (MEKC) using urea as an organic additive to the working electrolyte (a 25 mM phosphoric acid solution and 10 mM sodium dodecyl sulfate) was demonstrated. The use of online preconcentration (stacking and sweeping) allowed us to lower the detection limit for steroids to ~3 ng/mL. The total analysis time was 15 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号