首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We present a new system for the sensitive analysis of cephalosporins by CE using both on-line SPE and large-volume sample stacking (LVSS). Sample volumes of 250 muL were loaded onto the SPE microcolumn which was then desorbed with 426 nL of ACN. The SPE elution plug was injected into the CE system via an in-line valve interface filling approximately 60% of the volume of the separation capillary. Subsequently, LVSS was performed by applying a voltage of -5 kV, which resulted in the simultaneous removal of the elution solvent and the preconcentration of the analytes in a narrow zone. This way the amount of analyte loaded into the capillary could be considerably increased without serious loss of CE separation efficiency. LODs for cefoperazone and ceftiofur were in the ng/L range which represents an improvement of a factor of 8450 and 11 450 when compared with direct CE injection. The cephalosporin test compounds presented a good linear response (corrected peak area) between 0.5 and 10 mug/L with correlation coefficients higher than 0.995. The final method is compared with previously reported LVSS-CE and SPE-CE systems for the analysis of cephalosporins.  相似文献   

2.
The separation of three selective serotonin reuptake inhibitors (SSRIs) by capillary electrophoresis (CE) with fully integrated solid-phase extraction (SPE) is described. Polymeric monolithic SPE modules were prepared in situ within a fused silica capillary from either butyl methacrylate-co-ethylene dimethacrylate or 3-sulfopropyl methacrylate-co-butyl methacrylate-co-ethylene dimethacrylate. Using a 1 cm SPE module placed at the inlet of the capillary, a mixture of sertraline, fluoxetine and fluvoxamine was extracted from aqueous solution by applying a simple pressure rinse. Under pressure-driven conditions, efficient elution was possible from both SPE materials investigated using 50 mM phosphate buffer, pH 3.5 in acetonitrile (20/80, v/v). Two different strategies were investigated for the efficient elution and subsequent CE separation. Injection of an aqueous sample plug directly into the non-aqueous elution/separation buffer was found to be unsuitable with poor elution profiles observed in the electrodriven mode. Alternatively, a sample plug equivalent to several capillary volumes could be injected by pressure followed by filling the capillary with the non-aqueous elution/separation buffer from the outlet end using a combination of pressure and electrodriven flow. Using a neutral monolith, efficient elution/separation was not possible due to an unstable electroosmotic flow (EOF), however, by adding the ionisable monomer, 3-sulfopropyl methacrylate to the SPE module to increase and stabilise the EOF, it was possible to achieve efficient elution from the SPE module, followed by baseline separation by CE using a 200 mM acetate buffer, pH 3.5 in acetonitrile (10/90, v/v). With enrichment factors of over 500 achieved for each of the analytes this demonstrates the potential of in-line SPE-CE for the sensitive analysis of these drugs.  相似文献   

3.
Feng A  Tran NT  Chen C  Hu J  Taverna M  Zhou P 《Electrophoresis》2011,32(13):1623-1630
An in-line SPE method coupled to CE was developed for the analysis of DNA. The amino silica monolith was prepared in situ by polymerization of tetraethoxysilane and N-(β-aminoethyl)-γ-aminopropyltriethoxysilane in ethanol aqueous solution at the inlet end of a 100?μm id fused-silica capillary, and the remaining part of the capillary was used as separation channel. The procedure for this in-line SPE-CE method was constructed on the basis of investigation on operational conditions such as the introduction mode of sieving matrix, the composition of elution solvent and the elution time. Twenty millimolar ammonium hydroxide was demonstrated to be effective for DNA desorption from the monolith, and linear poly(N-isopropylacrylamide) was used as the separation matrix. The proposed method could achieve limits of detection of 0.065-0.123?ng/mL for six DNA fragments ranging 100-2000?bp. Compared with conventional CE, preconcentration factors of over 100 times were obtained. The applicability of the in-line SPE-CE method was further demonstrated by analyzing plasmid DNA from Escherichia coli crude lysate.  相似文献   

4.
利用羟丙基纤维素溶液动态涂层技术修饰毛细管管壁,改善了分离效率.在不影响质谱检测的条件下,将动态涂层毛细管电泳与质谱检测联用,有效地提高了对蛋白质的鉴定能力.将该技术应用于对复杂蛋白质样品的酶解产物的分析鉴定,结果令人满意.  相似文献   

5.
On-line coupling of SPE and CE-MS for peptide analysis   总被引:1,自引:0,他引:1  
An on-line SPE-CE-MS system has been developed for the analysis of peptides. Analytes are preconcentrated using a C(18) microcolumn (5 x 0.5 mm id), and then introduced into the CE system via a valve interface. The CE system with a Polybrene-poly(vinylsulfonate) bilayer coated capillary is combined with an ion-trap mass spectrometer via ESI using a coaxial sheath-liquid sprayer. The on-line coupling of the SPE and CE step by the valve interface is advantageous because it allows an independent functioning of the system parts. Optimization of the SPE-CE system was performed using UV detection. Subsequently, the SPE-CE system has been coupled to the ion-trap mass spectrometer. Test solutions with enkephalin peptides (50 ng/mL) were used for evaluation of system performance. Repeatability of effective mobility and peak area ratio of the two enkephalins were within 1.2% and 9% RSD, respectively. The analysis of 1:1 v/v diluted cerebrospinal fluid samples spiked with enkephalin peptides showed detection limits (S/N = 3) in the range of 1.5-3 ng/mL (around 5 nM), which were similar to those obtained for enkephalin test solutions. Moreover, the potential of the on-line SPE-CE-MS system was demonstrated by the analysis of a cytochrome C digest. Some hydrophilic peptides did not show sufficient retention on the SPE column, and were lost during preconcentration. Nonetheless, positive identification of the protein was achieved, indicating the feasibility of the system for proteomics.  相似文献   

6.
Dynamic pH barrage junction focusing in CE enables effective signal enhancement, quantitative capture efficiencies, and straightforward optimization. The method is a technical variant of dynamic pH junction focusing. CE separation with dynamic pH barrage junction focusing is compatible with both optical and mass spectrometric detection. We developed a CE–MS/MS method using hydrophilic polyethyleneimine-coated capillaries and validated it for the qualitative analysis of amino acids, peptides, and tryptic peptides of digested monoclonal antibodies. The S/N of extracted ion electropherograms of zwitterionic analytes were enhanced by approximately two orders of magnitude with a tradeoff of a shortened separation window. Online focusing improved the MS signal intensity of a diluted antibody digest, enabling more precursor ions to be analyzed with subsequent tandem mass spectrometric identification. It also broadened the concentration range of protein digest samples for which adequate sequence coverage data can be obtained. With only 0.9 ng of digested infliximab sample loaded into the capillary, 76% and 100% sequence coverage was realized for antibody heavy and light chains, respectively, after online focusing. Full coverage was achieved with 9 ng of injected digest.  相似文献   

7.
This paper describes two different approaches for increasing the sensitivity for the analysis of ceftiofur by capillary electrophoresis (CE). Two different techniques based on the introduction of an enlarged volume of sample, namely large volume sample stacking (LVSS) and in-line solid phase extraction (SPE) were studied and compared. LVSS allowed the on-column electrophoretic preconcentration of ceftiofur without modification of the separation capillary. In-line SPE-CE was developed by using a home-made microcartridge that was filled with a reversed-phase sorbent (C18). The microcartridge was coupled in-line near the inlet of the separation capillary. LVSS and in-line SPE-CE allowed automated operation and improved sensitivity for the analysis of ceftiofur with respect to conventional CE. When environmental water samples were analyzed, an additional pretreatment step based on off-line SPE was necessary in both cases to further decrease the detection limits. In terms of sensitivity for the determination of ceftiofur in river water samples, the combination of off-line SPE with in-line SPE-CE was found the most sensitive with a detection limit of 10 ng L−1, whereas the method based on the use of off-line SPE with LVSS presented a detection limit of 100 ng L−1.  相似文献   

8.
This work brings together some contributions for the use of nonaqueous media for proteomic analysis, for both capillary electrophoresis (CE) separation and the preparation of tryptic digests. First, a ternary nonaqueous buffer consisting of 60/30/10 v/v methanol/acetonitrile/acetic acid with 12.5 mmol/L ammonium acetate was optimized for CE separation of the tryptic digest of lysozyme. Lysozyme was chosen as a model system for the protein digestion, which has also been prepared in an organic-rich medium with methanol/50 mmol/L NH(4)HCO(3), pH 8.0 (60/40 v/v). The separation results were compared to in silico (PeptideCutter program) digestion conditions, and high-efficiency peak separation (18 peaks) was obtained in 20 min with an electric field of 350 V/cm. In addition, we have evaluated the stability of a coated capillary with poly-N,N-dimethylacrylamide (60/30 cm total/effective length and 75 microm ID) for over 100 runs of tryptic digest with the nonaqueous background electrolyte solvent system. The migration times for ten selected peptide peaks presented 3-7% relative standard deviation.  相似文献   

9.
CE offers the advantage of flexibility and method development options. It excels in the area of separation of ions, chiral, polar and biological compounds (especially proteins and peptides). Masking the active sites on the inner surface of a bare fused silica capillary wall is often necessary for CE separations of basic compounds, proteins and peptides. The use of capillary surface coating is one of the approaches to prevent the adsorption phenomena and improve the repeatability of migration times and peak areas of these analytes. In this study, new capillary coatings consisting of (i) derivatized polystyrene nanoparticles and (ii) derivatized fullerenes were investigated for the analysis of peptides and protein digest by CE. The coated capillaries showed excellent run‐to‐run and batch‐to‐batch reproducibility (RSD of migration time ≤0.5% for run‐to‐run and ≤9.5% for batch‐to‐batch experiments). Furthermore, the capillaries offer high stability from pH 2.0 to 10.0. The actual potential of the coated capillaries was tested by combining CE with MALDI‐MS for analysing complex samples, such as peptides, whereas the overall performance of the CE‐MALDI‐MS system was investigated by analysing a five‐protein digest mixture. Subsequently, the peak list (peptide mass fingerprint) generated from the mass spectra of each fraction was entered into the Swiss‐Prot database in order to search for matching tryptic fragments using the MASCOT software. The sequence coverage of analysed proteins was between 36 and 68%. The established technology benefits from the synergism of high separation efficiency and the structure selective identification via MS.  相似文献   

10.
《Electrophoresis》2017,38(3-4):401-407
Four methods were compared for analysis of host‐cell protein (HCP) impurities in a recombinant mAb. First, CZE‐MS/MS was used to analyze the digest of an HCP sample following extraction of the mAb with proteins A and L affinity columns; 220 protein groups and 976 peptides were identified from the depleted HCP digest. Second, a nanoACQUITY UltraPerformance LCH system was also used to analyze the depleted HCP digest; 34 protein groups and 53 peptides from 50 ng of the depleted HCP digest and 290 protein groups and 1011 peptides were identified from 1 μg of the depleted HCP digest. Third, 185 protein groups and 709 peptides were identified by CZE‐MS/MS from the HCP digest without depletion. Fourth, a strong cation exchange SPE was coupled to CZE‐ESI‐MS/MS using online pH gradient elution for analysis of the HCP digest without depletion. A series of five pH bumps were applied to elute peptides from the strong cation exchange monolith followed by analysis using CZE coupled to a Q Exactive HF mass spectrometer; 230 protein groups and 796 peptides were identified from the HCP digest without depletion.  相似文献   

11.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

12.
mAbs are highly complex proteins that present a wide range of microheterogeneity that requires multiple analytical methods for full structure assessment and quality control. As a consequence, the characterization of mAbs on different levels is particularly product‐ and time‐consuming. CE‐MS couplings, especially to MALDI, appear really attractive methods for the characterization of biological samples. In this work, we report the last instrumental development and performance of the first totally automated off‐line CE‐UV/MALDI‐MS/MS. This interface is based on the removal of the original UV cell of the CE apparatus, modification of the spotting device geometry, and creation of an integrated delivery matrix system. The performance of the method was evaluated with separation of five intact proteins and a tryptic digest mixture of nine proteins. Intact protein application shows the acquisition of electropherograms with high resolution and high repeatability. In the peptide mapping approach, a total number of 154 unique identified peptides were characterized using MS/MS spectra corresponding to average sequence coverage of 64.1%. Comparison with NanoLC/MALDI‐MS/MS showed complementarity at the peptide level with an increase of 42% when using CE/MALDI‐MS coupling. Finally, this work represents the first analysis of intact mAb charge variants by CZE using an MS detection. Moreover, using a peptide mapping approach CE‐UV/MALDI‐MS/MS fragmentation allowed 100% sequence coverage of the light chain and 92% of the heavy chain, and the separation of four major glycosylated peptides and their structural characterization.  相似文献   

13.
The use of SPE coupled in‐line to CE using electrospray MS detection (in‐line SPE‐CE‐ESI‐MS) was investigated for the preconcentration and separation of four UV filters: benzophenone‐3, 2,2‐dihydroxy‐4‐methoxybenzophenone, 2,4‐dihydroxybenzophenone and 2‐phenylbenzimidazole‐5‐sulphonic acid. First, a CE‐ESI‐MS method was developed and validated using standard samples, obtaining LODs between 0.06 μg/mL and 0.40 μg/mL. For the in‐line SPE‐CE‐ESI‐MS method, three different sorbents were evaluated and compared: Oasis HLB, Oasis MCX, and Oasis MAX. For each sorbent, the main parameters affecting the preconcentration performance, such as sample pH, volume, and composition of the elution plug, and sample injection time were studied. The Oasis MCX sorbent showed the best performance and was used to validate the in‐line SPE‐CE‐ESI‐MS methodology. The LODs reached for standard samples were in the range between 0.01 and 0.05 ng/mL with good reproducibility and the developed strategy provided sensitivity enhancement factors between 3400‐fold and 34 000‐fold. The applicability of the developed methodology was demonstrated by the analysis of UV filters in river water samples.  相似文献   

14.
Wang C  Jemere AB  Harrison DJ 《Electrophoresis》2010,31(22):3703-3710
We describe a microfluidic device in which integrated tryptic digestion, SPE, CE separation and electrospray ionization for MS are performed. The chip comprised of 10 × 30 μm channels for CE, and two serially connected 150?μm deep, 800?μm wide channels packed with 40 to 60 μm diameter beads, loaded with either immobilized trypsin, reversed-phase packing or both. On-chip digestion of cytochrome c using the trypsin bed showed complete consumption of the protein in 3 min, in contrast to the 2 h required for conventional solution phase tryptic digestion. SPE of 0.25 μg/mL solutions of the peptides leu-enkephalin, angiotensin II and LHRH gave concentration enhancements in the range of 4.4-12, for a ten times nominal volume ratio. A 100 nM cytochrome c sample concentrated 13.3 times on-chip gave a sequence coverage of 85.6%, with recovery values ranging from 41.2 to 106%. The same sample run without SPE showed only five fragment peaks and a sequence coverage of 41.3%. When both on-chip digestion and SPE (13.3 volume ratio concentration enhancement) were performed on 200 nM cytochrome c samples, a sequence coverage of 76.0% and recovery values of 21-105% were observed. Performing on-chip digestion alone on the same sample gave only one significant fragment peak. The above digestion/peptide concentration step was compared to on-chip protein concentration by SPE followed by on-chip digestion with solution phase trypsin. Both procedures gave similar recovery results; however, much larger trypsin autodigestion interference in the latter approach was apparent.  相似文献   

15.
A simplified protein precipitation/mixed-mode cation-exchange solid-phase extraction (PPT/SPE) procedure has been investigated. A mixture of acetonitrile and methanol along with formic acid was used to precipitate plasma proteins prior to selectively extracting the basic drug. After vortexing and centrifugation, the supernatants were directly loaded onto an unconditioned Oasis MCX microElution 96-well extraction plate, where the protonated drug was retained on the negatively charged sorbent while interfering neutral lipids, steroids or other endogenous materials were washed away. Normal wash steps were deemed unnecessary and not used before sample elution. The sample extracts were analyzed under both conventional and high-speed liquid chromatography/tandem mass spectrometry (LC/MS/MS) conditions to examine the feasibility of the PPT/SPE procedure for human plasma sample clean-up. For the conventional LC/MS/MS method, chromatographic separation was achieved on a C18, 2.1 x 50 mm column with gradient elution (k' = 5.5). The mobile phase contained 0.1% formic acid in water and 0.1% formic acid in acetonitrile. For the high-speed LC/MS/MS method, chromatographic separation was achieved on a C18, 2.1 x 10 mm guard column with gradient elution (k' = 2.2, Rt = 0.26 min). The mobile phase contained 0.1% formic acid in water and 0.001% trifluoroacetic acid in acetonitrile. Detection for both conventional and high-speed LC/MS/MS methods was by positive ion electrospray tandem mass spectrometry on a ThermoElectron Finnigan TSQ Quantum Ultra, where enhanced resolution (RP 2000; 0.2 amu) was used for high-speed LC/MS/MS. The standard curve, ranging from 0.5 to 100 ng/mL, was fitted to a 1/x weighted quadratic regression model.This combined PPT/SPE procedure effectively eliminated time-consuming sorbent conditioning and wash steps, which are essential for a conventional mixed-mode SPE procedure, but retained the advantages of both PPT (removal of plasma proteins) and mixed-mode SPE (analyte selectivity). The validation results demonstrated that this PPT/SPE procedure was well suited for both conventional and high-speed LC/MS/MS analyses. In comparison with a conventional mixed-mode SPE procedure, the simplified PPT/SPE process provided comparable sample extract purity. This simple sample clean-up procedure can be applied to other basic compounds with minor modifications of PPT solvents.  相似文献   

16.
Fritless SPE on‐line coupled to CE with UV and MS detection (SPE‐CE‐UV and SPE‐CE‐MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE‐CE‐UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine‐enkephaline (Met). A microcartridge length of 4 mm was selected, sample was loaded for 10 min at 930 mbar and the retained peptides were eluted with 67 nL of an acidic hydro‐organic solution. Using SPE‐CE‐MS, peak area and migration time repeatabilities for the three opioid peptides were 12–27% and 4–5%, respectively. SPE recovery was lower for the less hydrophobic DynA (22%) than for End1 (66%) and Met (78%) and linearity was satisfactory in all cases between 5 and 60 ng/mL. The LODs varied between 0.5 and 1.0 ng/mL which represent an enhancement of two orders of magnitude when compared with CE‐MS. Cerebrospinal fluid (CSF) samples spiked with the opioid peptides were analyzed to demonstrate the applicability to biological samples. Peak area and migration time repeatabilities were similar to the standard solutions and the opioid peptides could be detected down to 1.0 ng/mL.  相似文献   

17.
A method based on tryptic digestion, ultrafiltration and capillary electrophoresis/mass spectrometry (CE/MS) has been developed for the analysis of the glycosylation pattern in the phospholipase A2 (PLA) of individual honeybees. Without reducing the disulfide bonds, PLA was digested with trypsin and filtered with a 3 kDa molecular weight (MW) cut-off membrane. With this procedure, the glycopeptides could be isolated from the nonglycosylated peptides. After tryptic digestion and ultrafiltration, the disulfide bonds were reduced before analysis by CE. To reduce the adsorption, CE separation was performed on successive multiple ionic-polymer (SMIL) polybrene (PB) coated capillary columns. The SMIL-PB columns allowed partial separation of the glycopeptides and eight glycopeptides were identified by on-line coupling of CE with electrospray ionization (ESI) mass spectrometry. The analysis of phospholipase A2 from the venom of individual bees indicated that the variation and relative abundances of different glycopeptides were similar between the younger and the older bees.  相似文献   

18.
In this study, the advantages of carrying out the analysis of peptides and tryptic digests of proteins under gradient elution conditions at pH 6.5 by reversed-phase liquid chromatography (RP-HPLC) and in-line electrospray ionisation mass spectrometry (ESI-MS) are documented. For these RP separations, a double endcapped, bidentate anchored n-octadecyl wide pore silica adsorbent was employed in a capillary column format. Compared to the corresponding analysis of the same peptides and protein tryptic digests using low pH elution conditions for their RP-HPLC separation, this alternative approach provides improved selectivity and more efficient separation of these analytes, thus allowing a more sensitive identification of proteins at different abundance levels, i.e. more tryptic peptides from the same protein could be confidently identified, enabling higher sequence coverage of the protein to be obtained. This approach was further evaluated with very complex tryptic digests derived from a human plasma protein sample using an online two-dimensional (2D) strong cation-exchange (SCX)-RP-HPLC-ESI-MS/MS system. Again, at pH 6.5, with mobile phases of different compositions, improved chromatographic selectivities were obtained, concomitant with more sensitive on-line electrospray ionisation tandem mass spectrometric (ESI-MS/MS) analysis. As a consequence, more plasma proteins could be confidently identified, highlighting the potential of these RP-HPLC methods with elution at pH 6.5 to extend further the scope of proteomic investigations.  相似文献   

19.
A nano-scale solid-phase extraction (SPE) device was developed for the detection of gel-separated proteins in low abundance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with a simplified microfabrication technology. By using SU-8 photoresist instead of epoxy glue to connect the microchannel and transfer capillary, polymeric contaminant signals in MS analysis were significantly reduced. Micro SPE columns with different capacities and geometric characteristics were investigated in order to increase the detection sensitivity and decrease spot size for MALDI-TOF-MS analysis. It is shown that enhancements in sensitivities for the detection of proteins in low abundance were correlated with the reduction in column capacity and increase in column aspect ratio. Fifty nanoliters of matrix solution were sufficient to elute the sample completely from the optimized micro SPE column with 3.5 nL capacity. The mass spectrum of a 5 fmol in-gel tryptic digest of bovine serum albumin (BSA), processed by the micro SPE column, demonstrated that 29 peptides matched the protein giving a sequence coverage of 51%, which was better than that obtained from analysis of 25 fmol of the same sample prepared by the dried-droplet method. With the micro SPE column treatment of 2 microL of digestion supernatant of a gel spot of the IQGAP1 protein, 15 peptides were detected from the mass spectrum with the highest individual score of 111, while, with a ZipTip procedure, only nine peaks were detected with the highest individual score of 71. Analytical results demonstrated that this approach greatly improved the sequence coverage and identification specificity for the tested protein. It can serve as a very useful tool in proteomics studies, especially for low abundance proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号