首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermittent SMB (I-SMB) process is a multi-column chromatographic process, which is a modification of the conventional SMB process, has been applied so far only in the sugar industry and is claimed to achieve higher productivity. In the I-SMB process the time interval between two port switches is divided in two sub-intervals, and only during the first the product streams are collected. The potential of the I-SMB technology is demonstrated in the case of the separation of a binary mixture subject to the linear isotherm by using both the equilibrium theory of chromatography and detailed simulations. It is shown that a I-SMB with only four columns can achieve much higher separation performance than a SMB unit with four columns.  相似文献   

2.
Simulated moving bed (SMB) technology is a continuous chromatographic technique proven to have many advantages compared to conventional batch chromatography, such as: raised productivity and product concentration, reduced buffer consumption as well as more efficient use of raw material. In this study a 20 column SMB process for the separation of lactoperoxidase and lactoferrin from whey protein concentrate (WPC) was developed. A simplified approach with data from a single column experiment was used when designing the process. The SMB process data were compared to a theoretical scale-up of the breakthrough experiment reflecting the same 20 column set-up run in non-moving bed mode. The outcome of the comparison is a 48% raise in productivity, a 4.3 times decrease in buffer consumption, 6.5 times raise in target protein concentration with a raw material utilization which is slightly better for the SMB process.  相似文献   

3.
This paper presents an analysis of a hybrid process consisting of simulated moving bed (SMB) chromatography and crystallization and studies its performance for the separation of the Tr?ger's base enantiomers. The SMB is simulated using a detailed model including column efficiency, thus, implying a proper evaluation of the effect of column size on column efficiency and separation performance. The crystallization operations are accounted for through material balances, assuming equilibrium between enantiopure crystals and mother liquor. A genetic algorithm is used to optimize the combined process, using proper definitions of objective functions. Multi-objective optimization of this hybrid process for productivity and evaporation cost in terms of operating parameters, column length, and SMB feed concentration shows an optimum SMB purity value as a trade off between increased SMB performance and recycle of the mother liquor.  相似文献   

4.
Optimization strategy for simulated moving bed systems   总被引:2,自引:0,他引:2  
Simulated moving bed (SMB) systems are of rising interest in the purification of pharmaceuticals or specialty chemicals (racemic mixtures, proteins, organic acids, etc.). This is particularly due to their advantage in solvent reduction, obtained productivity and purities as well as investment costs in comparison to eluent chromatography. This paper evolved from the need for a readily available algorithm in order to find optimal operating conditions for SMB chromatography systems with nonlinear or coupled adsorption isotherms. The herein developed algorithm is based on a semi-deterministic two-step approach. First, optimal operating conditions with regard to an objective function are found by knowing adsorption measurements only. In a second step actual SMB results are used to adapt the initial isotherm measurements and match the simulation with the experiment. The algorithm is verified on a bench-scale SMB unit applied for the separation of a racemic epoxide with Chiralcel-OD as stationary phase. The developed algorithm improved the productivity of the investigated experimental design by 24%.  相似文献   

5.
Solvent gradient operation of simulated moving beds. I. Linear isotherms   总被引:1,自引:0,他引:1  
The simulated moving bed (SMB) is a multi-column chromatographic separation process, which--with respect to the single-column preparative batch process--allows for a continuous separation with larger productivity and smaller solvent consumption at the same time. The benefits of this process have been shown for several different applications in fine chemistry, particularly for the separation of enantiomers. In general, SMBs are operated under isocratic conditions. However, separation performance can be further improved by applying some sort of gradient mode operation, in order to optimize the operating conditions of each individual section of the unit. This can be achieved by tuning the retention behavior of the solutes to be separated along the unit, namely by enforcing weak adsorption conditions in sections 1 and 2, and strong adsorption conditions in sections 3 and 4. This can be achieved by applying a temperature gradient (high temperature in section 1, and low temperature in section 4), a pressure gradient (e.g. in the supercritical SMB, when pressure is high in section 1, and low in section 4), or a solvent gradient, which is the aim of this work. In the solvent gradient mode the mobile phase consists of a mixture of two or more solvents. To different mobile phase compositions corresponds a different retention behavior of the solutes, i.e. different adsorption isotherms. In this work we study a closed loop SMB unit with solvent mixtures of two different compositions entering the unit at the feed and desorbent inlet ports, respectively. Thereby two different mobile phase compositions are established in sections 1 and 2, and sections 3 and 4, respectively. To optimize this process the equilibrium theory design criteria for non-linear SMBs are extended to describe this operation mode. It is shown how the region of separation is derived and how the optimal operating conditions can be found. Finally the solvent gradient mode is compared with the isocratic mode in terms of productivity and solvent consumption.  相似文献   

6.
Often there are several chromatographic systems, i.e., combinations of mobile and stationary phases, available to solve a certain separation problem. Essential differences of these chromatographic systems are the separation factors and the efficiencies. For preparative applications in addition also the column saturation capacities and solubility limits are of importance. The impact of all these parameters appears to be rather well understood for conventional overloaded elution chromatography using a single column. In the last years the continuous simulated moving bed (SMB) process was increasingly used as a powerful alternative to batch elution since increased productivities and reduced solvent consumptions could be realised. However, the selection of suitable chromatographic systems is more sophisticated for this process. In this paper five different chromatographic systems capable of separating the enantiomers of mandelic acid are compared based on the achievable productivities using SMB chromatography. For these five systems the adsorption isotherms have been determined experimentally. Subsequently, an analysis of the SMB process was performed numerically using a well-established model.  相似文献   

7.
An optimised coupling of liquid chromatography and fractional crystallisation is suggested for efficient enantioseparation. As a first stage, a chromatographic separation, preferably simulated moving bed (SMB) chromatography, is applied to achieve an enantiomeric enrichment sufficient for a subsequent crystallisation. First results of the experimental and modelling work for the model system (+)-/(-)-mandelic acid in an aqueous solution are described. Chromatographic investigations involve the estimation of adsorption isotherms on a suitable chiral stationary phase and the simulation and optimisation of a corresponding SMB process. From the ternary phase diagram measured for the (+)-/(-)-enantiomer/ solvent system, the conditions required to crystallise a pure enantiomer from an asymmetric mixture can be derived. The productivity gains achievable from the combined process compared to the application of chromatography alone are discussed.  相似文献   

8.
The use of monolithic silica sorbents for the isolation of substances by preparative liquid chromatography is demonstrated. Preparative liquid chromatography is recognized as a valuable technique for the isolation and purification of substances in the pharmaceutical and fine chemicals industry. The system technology has meanwhile reached a high standard, and the greatest future improvements are expected to arise from new and improved adsorbents. Monolithic silica sorbents offer some unique features for preparative liquid chromatography. They exhibit high efficiencies even at high flow rates due to their fast convective mass transfer and can therefore be used at very high mobile phase velocities, leading to high productivity and hence to maximum process economy. The benefits of this new type of adsorbent are illustrated for an example in batch‐chromatographic mode and an example using the continuous simulated moving bed (SMB) technology.  相似文献   

9.
Simulated moving bed (SMB) chromatography, a continuous multi-column chromatographic process, has become one of the preferred techniques for the separation of the enantiomers of a chiral compound. Several active pharmaceutical ingredients, including blockbuster drugs, are manufactured using the SMB technology. Compared to single column preparative chromatography, SMB separations achieve higher productivity and purity, while reducing the solvent consumption. The SMB technology has found applications both at small and large scales. Design methods have been developed for robust operation and scale-up, using data obtained from analytical experiments. In the last few years, rapid developments have been made in the areas of design, improved process schemes, optimization and robust control. This review addresses these developments, as well as both the fundamentals of the SMB science and technology and some practical issues concerning the operation of SMB units. Particular emphasis is placed on the consolidation of the “triangle theory”, a design tool that is used both in the academia and industry for the design of SMB processes.  相似文献   

10.
This work analyzes the performance of the SMB and the column chromatography processes for two different case studies: the first stage of the plasmid DNA (pDNA) polishing, and the Tr?ger's base enantiomer separation, in which the adsorption isotherms are linear and non-linear, respectively. Simulation tools are used together with an optimization routine (Non-Sorting Genetic Algorithm (NSGA)) in order to find the optimum operating conditions leading to maximum productivity and minimum solvent consumption; the optimum solution for each of the processes is a curve on the productivity-solvent consumption plane, the so-called Pareto set. The comparison between the column and the SMB processes is based on the relative position of the two Pareto sets calculated at equal conditions and for the same final purity and recovery of the target species. The results show that SMB is superior to column chromatography in the two case studies investigated, i.e. in the case of the linear isotherm (pDNA), the productivity gain is up to a factor two for a given value of the solvent consumption. Furthermore, the flexibility of the SMB operation is larger, since the Pareto sets are flatter and they prolong into regions of the productivity-solvent consumption plane that are not accessible with the column chromatography process.  相似文献   

11.
Simulated Moving Bed separations of enantiomers or fine chemicals are usually carried out in the isocratic mode, i.e. by applying the same operating conditions (temperature, pressure, mobile phase composition, pH) in the whole SMB unit. However, it has been recently recognized that by properly modulating operating conditions in the SMB sections. i.e. Sections 1-4 normally, separation performance in terms of productivity and solvent consumption can be significantly improved. In this work, we study solvent gradient SMB (SG-SMB) operation, where the concentration of a modifier in the main solvent constituting the mobile phase is adjusted along the SMB unit, so as to have weaker retention of the species to be separated in the first two sections, and stronger retention in Sections 3 and 4. Overload chromatographic conditions are considered, where the adsorption behavior is characterized by a nonlinear competitive adsorption isotherm, e.g. a binary Langmuir isotherm. Design criteria to achieve complete separation are developed in the frame of the equilibrium theory of chromatography. The theoretical findings are discussed in view of typical effects of the modifier concentration on retention times and solubility of the species to be separated, and an overall assessment of the SG-SMB technology is attempted.  相似文献   

12.
Simulated moving bed (SMB) chromatography combines high productivity and high purities with reduced buffer consumption. We have developed a laboratory scale single column SMB (SC-SMB) unit with all four separation zones in one column. Distributors embedded within the chromatographic medium allow introduction and withdrawal of liquid between the zones. This single column unit exhibits homogenous packing in all zones, reduced headspace, less complex tubing, fewer valves, and almost undisturbed plug flow between the separation zones. The separation performance of the column was investigated with two different binary model mixtures. Furthermore, the SC-SMB unit is operated with a modified AKTA Explorer workstation, which has been specifically developed for the handling of biological fluids.  相似文献   

13.
Summary The feasibility of using simulated moving bed (SMB) chromatography for the chiral separation of a racemic epoxide with Chiralcel-OD as the stationary phase is demonstrated on a semi-preparative scale. Operating conditions for the separation are chosen with the help of a simple chart that depicts visually the interrelationships between the system flow rates and the SMB design criteria. The 12 column (each 100 mm×16 mm ID) SMB system continuously resolved the racemic mixture at a rate of 11.5 g/24 hr into streams with 95% and 94.4% e.e. (enantiomeric excess). A comparison of the SMB process with an optimized multiple-injection conventional chromatographic separation showed similar specific production rates for both methods, but a seven-fold lower solvent consumption for the SMB.  相似文献   

14.
Gradient elution has been practiced in chromatographic separations for many years. The application of discontinuous "step" gradients in simulated moving bed (SMB) chromatography has been very successful in increasing both processing rates and column productivity, resulting in a reduction in the number of SMB columns required. With the advent of the field gradient focusing techniques, electrophoresis has gained the ability to apply a continuous electric field gradient to a true moving bed (TMB) electrophoretic separation. Application of a spatial gradient allows a large degree of control of the product concentrations inside the separation unit as well as a large increase in product throughput. A model of moving bed electrophoretic separations has been developed that demonstrates the potential advantages of applying a continuous gradient to the moving bed process. These advantages include the reduction of detrimental peak tailing and the ability to decrease the concentrations of the compounds being separated in comparison with commonly used step gradient elution.  相似文献   

15.
Preparative HPLC and simulated moving bed (SMB) chromatography were used to resolve significant quantities of a racemic pharmaceutical intermediate. In addition, smaller scale studies using closed-loop recycling and steady state recycling (SSR) were performed so that a meaningful comparison of all these techniques could be made using the same real world separation. A highly optimized, six-column SMB process was clearly the superior technique and was used for the process-scale (247 kg of racemate) resolution. At the more moderate lab-scale (33 kg of racemate and 19 kg of racemate), a frequently used but less optimized eight-column SMB process was used. It was found that SSR was comparable to the lab-scale SMB process in productivity and solvent consumption. Thus, it appears that SSR can be a useful choice at such moderate scales. Finally, at moderate scales when neither SSR nor SMB is available, it was found that acceptable results were obtained with both closed-loop recycling and with a two-step preparative process.  相似文献   

16.
In this contribution, simple methods are presented for controlling a simulated moving bed (SMB) chromatographic process with standard PI (proportional integral) controllers. The first method represents a simple and model-free inferential control scheme which was motivated from common distillation column control. The SMB unit is equipped with UV detectors. The UV signals in the four separation zones of the unit are fixed by four corresponding PI controllers calculating the ratio of liquid and solid flow in the respective separation zone. In order to be able to adjust the product purity a second, model-based control scheme is proposed. It makes use of the nonlinear wave propagation phenomena in the apparatus. The controlled chromatographic unit is automatically working with minimum solvent consumption and maximum feed throughput--without any numerical optimization calculations. This control algorithm can therefore also be applied for fast optimization of SMB processes.  相似文献   

17.
The operation of simulated moving beds (SMBs) at their optimal operating conditions is difficult and not robust. Therefore, it is common practice to operate SMB units far from their economic optimum in order to tolerate uncertainties in the system and minimize the effect of disturbances. Recently, we have proposed an on-line optimization based SMB control scheme that allows to exploit the full economic potential of SMB technology. The goal of this work is two-fold. Firstly, to experimentally evaluate and demonstrate the capability of the controller to optimize and operate the SMB units, thus delivering the products with maximum productivity and minimum solvent consumption. Secondly, to show the suitability of the controller even using a minimum of system information, thus making the detailed isotherm measurements redundant and saving time in the separation design phase. This paper reports and discusses the first experimental implementation of the control concept on a high purity separation of nucleosides (uridine, guanosine) with an eight-column four-section SMB where the species to be separated are retained on the source 30RPC stationary phase according to a linear isotherm.  相似文献   

18.
This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography.  相似文献   

19.
In continuous chromatography simulated moving bed (SMB) is a firmly established powerful technique for the separation of fine chemicals and enantiomers. The use of a controller could improve the operation conditions and increase the productivity of an SMB unit. However, the performance of any controller is greatly affected by the reliability and the quality of the feedback information from the plant. Therefore, to overcome the limitations of optical detectors, such as UV and polarimeter, an automated on-line HPLC monitoring system was developed and installed to monitor the product streams. The performance of the system is tested experimentally separating a mixture of guaifenesin enantiomers on Chiralcel OD columns with ethanol as mobile phase in our laboratory SMB unit under both linear and nonlinear chromatographic conditions. The results show that the new monitoring system provides precise and accurate data about the concentration of the components in the two product streams. Moreover, they prove that despite disturbances a combination of the controller and the new on-line monitoring system allows to fulfill the product specifications and to improve the performance of the process in terms of feed throughput and solvent consumption.  相似文献   

20.
A novel modification of simulated moving bed (SMB) technology, referred to as fractionation and feedback SMB (FF-SMB), has been introduced recently. This concept is based on fractionating one or both outlet streams and feeding the off-spec fractions back into the unit alternatingly with the original feed mixture. In this paper, the optimization problem of FF-SMB realizing one outlet fractionation is considered. A mathematical optimization framework based on a detailed process model is presented which allows to evaluate quantitatively the potential of this operating scheme. Detailed optimization studies have been carried out for a difficult separation characterized by small selectivity and low column efficiency. The results reveal that the proposed fractionation and feedback regime can be significantly superior to the classical SMB chromatography, in terms of both feed throughput and desorbent consumption. The effect of the feeding sequence on the performance of FF-SMB is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号