首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major aim of researchers working in the field of optics and photonics is to mold the flow of light in optical structures and devices. In the regime of ballistic light propagation, transformation optics has given a certain boost, for which optical invisibility cloaking devices are striking examples. Our capability to mold the flow of light in the regime of diffuse light propagation in light‐scattering media has fallen behind—while diffuse light from clouds, white wallpaper, computer monitors, and light‐emitting diodes is literally all around us every day. In this review, we summarize progress in steering the flow of diffuse light in turbid media which was triggered by the mathematical analogy between electrostatics, magnetostatics, stationary heat conduction, and stationary light diffusion. We give an extensive tutorial introduction to the mathematics of the diffusion equation for light and its solutions, present an overview on the current experimental state‐of‐the‐art of simple core–shell invisibility cloaking, and compare these experiments with diffusion theory as well as with more advanced modelling based on Monte Carlo simulations. The latter approach enables spanning the bridge from diffusive to ballistic light propagation.

  相似文献   


2.
Femtosecond laser machining has been widely used for fabricating arbitrary 2.5 dimensional (2.5D) structures. However, it suffers from the problems of low fabrication efficiency and high surface roughness when processing hard materials. To solve these problems, we propose a dry‐etching‐assisted femtosecond laser machining (DE‐FsLM) approach in this paper. The fabrication efficiency could be significantly improved for the formation of complicated 2.5D structures, as the power required for the laser modification of materials is lower than that required for laser ablation. Furthermore, the surface roughness defined by the root‐mean‐square improved by an order of magnitude because of the flat interfaces of laser‐modified regions and untreated areas as well as accurate control during the dry‐etching process. As the dry‐etching system is compatible with the IC fabrication process, the DE‐FsLM technology shows great potential for application in the device integration processing industry.

  相似文献   


3.
We report complete spatial shaping (both phase and amplitude) of the second‐harmonic beam generated in a nonlinear photonic crystal. Using a collinear second‐order process in a nonlinear computer generated hologram imprinted on the crystal, the desired beam is generated on‐axis and in the near field. This enables compact and efficient one‐dimensional beam shaping in comparison to previously demonstrated off‐axis Fourier holograms. We experimentally demonstrate the second‐harmonic generation of high‐order Hermite–Gauss, top hats and arbitrary skyline‐shaped beams.

  相似文献   


4.
The terahertz (THz) radiation from InGaN/GaN dot‐in‐a‐wire nanostructures has been investigated. A submicrowatt THz signal is generated with just ten vertically stacked InGaN quantum dots (QDs) in each GaN nanowire. Based on the experimental results and analysis, a single quantum wire is expected to generate an output power as high as 10 pW, corresponding to 1 pW per dot. These structures are among the most efficient three‐dimensional quantum‐confined nanostructures for the THz emission. By applying a reverse bias along the wires in a light‐emitting device (LED) consisting of such nanostructures, the THz output power is increased more than fourfold. Based on THz and photoluminescence (PL) experiments, the mechanism for the THz emission is attributed to dipole radiation induced by internal electric fields and enhanced by external fields.

  相似文献   


5.
This article presents a novel III‐V on silicon laser. This work exploits the phenomenon that a passive silicon cavity, side‐coupled to a III‐V waveguide, will provide high and narrow‐band reflectivity into the III‐V waveguide: the resonant mirror. This results in an electrically pumped laser with a threshold current of 4 mA and a side‐mode suppression ratio up to 48 dB.

  相似文献   


6.
A Luneburg lens is a fascinating gradient refractive index (GRIN) lens that can focus parallel light on a perfect point without aberration in geometrical optics. Constructing a three‐dimensional (3D) Luneburg lens at optical frequencies is a challenging task due to the difficulty of fabricating the desired GRIN materials. Here, we present the practical implementation of a 3D Luneburg lens at optical frequencies. Such a 3D Luneburg lens is designed with GRIN 3D simple cubic metamaterial structures, and fabricated with dielectric metamaterials by femtosecond laser direct writing in the commercial negative‐photoresist IP‐L. Simulated and experimental results exhibit an interesting 3D ideal focus for the infrared light. The protocol for developing the 3D Luneburg lens with ideal focus would prompt the potential applications in integrated light‐coupled devices and lab‐on‐chip integrated biological sensors based on infrared light.

  相似文献   


7.
We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate.

  相似文献   


8.
Multi scale hierarchical structures underpin mechanical, optical, and wettability behavior in nature. Here we present a novel approach which can be used to mimic the natural hierarchical patterns in a quick and easy maskless fabrication. By using two‐beam interference lithography with angle‐multiplexed exposures and scanning, we have successfully printed large‐area complex structures having a cascading resolution and 3D surface profiles. By precisely controlling the exposure dose we have demonstrated a capability to create different 3D textured surfaces having comparable aspect ratio with period spanning from 4 μm to 300 nm (more than one order of magnitude) and the height spanning from 0.9 μm to 40 nm, respectively. Up to three levels of biomimetic hierarchical structures were obtained that show several natural phenomena: superhydrophobicity, iridescence, directionality of reflectivity, and polarization at different colors.

  相似文献   


9.
In this work, we report optomechanical coupling, resolved sidebands and phonon lasing in a solid‐core microbottle resonator fabricated on a single mode optical fiber. Mechanical modes with quality factors (Qm) as high as 1.57 × 104 and 1.45 × 104 were observed, respectively, at the mechanical frequencies and . The maximum  Hz is close to the theoretical lower bound of 6 × 1012 Hz needed to overcome thermal decoherence for resolved‐sideband cooling of mechanical motion at room temperature, suggesting microbottle resonators as a possible platform for this endeavor. In addition to optomechanical effects, scatter‐induced mode splitting and ringing phenomena, which are typical for high‐quality optical resonances, were also observed in a microbottle resonator.

  相似文献   


10.
Wide‐angle, polarization‐independent structural reflective colors from both directions based on a one‐dimensional photonic crystal are demonstrated. Our device produces a distinct and saturated color with high angular tolerant performance up to ±70° for any polarization state of an incident light wave, which is highly desirable for a broad range of research areas. Moreover, the purity of the color and luminous intensity of the proposed device are improved as compared to conventional colorant‐based color filters and colloidal glasses. The present approach may have the potential to replace existing color filters and pigments and pave the way for various applications, including color displays and image sensor technologies.

  相似文献   


11.
Nanophotonic beamsplitters are fundamental building blocks in integrated optics, with applications ranging from high speed telecom receivers to biological sensors and quantum splitters. While high‐performance multiport beamsplitters have been demonstrated in several material platforms using multimode interference couplers, their operation bandwidth remains fundamentally limited. Here, we leverage the inherent anisotropy and dispersion of a sub‐wavelength structured photonic metamaterial to demonstrate ultra‐broadband integrated beamsplitting. Our device, which is three times more compact than its conventional counterpart, can achieve high‐performance operation over an unprecedented 500 nm design bandwidth exceeding all optical communication bands combined, and making it one of the most broadband silicon photonics components reported to date. Our demonstration paves the way toward nanophotonic waveguide components with ultra‐broadband operation for next generation integrated photonic systems.

  相似文献   


12.
Stimulated emission depletion (STED) microscopy has become a powerful imaging and localized excitation method, breaking the diffraction barrier for improved spatial resolution in cellular imaging, lithography, etc. Because of specimen‐induced aberrations and scattering distortion, it is a great challenge for STED to maintain consistent lateral resolution deep inside specimens. Here we report on deep imaging STED microscopy using a Gaussian beam for excitation and a hollow Bessel beam for depletion (GB‐STED). The proposed scheme shows an improved imaging depth of up to about 155 μm in a solid agarose sample, 115 μm in polydimethylsiloxane, and 100 μm in a phantom of gray matter in brain tissue with consistent super resolution, while standard STED microscopy shows a significantly reduced lateral resolution at the same imaging depth. The results indicate the excellent imaging penetration capability of GB‐STED, paving the way for deep tissue super‐resolution imaging and three‐dimensional precise laser fabrication.

  相似文献   


13.
The spatial coherence of organic light‐emitting diodes (OLEDs) is an important parameter that has gained little attention to date. Here, we present a method for making quantitative measurements of the spatial coherence of OLEDs using a Young's double‐slit experiment. The usefulness of the method is demonstrated by making measurements on a range of OLEDs with different emitters (iridium and europium complexes) and architectures (bottom and top emitting) and the fringe visibility is further manipulated by gratings embedded in external diffractive optical elements. Based on the experiments and simulation of the results, we quantitatively determine the spatial coherence lengths of several OLEDs and find them to be a few micrometers. A 60% increase in the spatial coherence length was observed when using a narrow bandwidth emitter and a metal‐coated grating.

  相似文献   


14.
15.
Open‐access microcavities are emerging as a new approach to confine and engineer light at mode volumes down to the λ3 regime. They offer direct access to a highly confined electromagnetic field while maintaining tunability of the system and flexibility for coupling to a range of matter systems. This article presents a study of coupled cavities, for which the substrates are produced using Focused Ion Beam milling. Based on experimental and theoretical investigation the engineering of the coupling between two microcavities with radius of curvature of 6 m is demonstrated. Details are provided by studying the evolution of spectral, spatial and polarisation properties through the transition from isolated to coupled cavities. Normal mode splittings up to 20 meV are observed for total mode volumes around . This work is of importance for future development of lab‐on‐a‐chip sensors and photonic open‐access devices ranging from polariton systems to quantum simulators.

  相似文献   


16.
Conventional techniques for transverse mode discrimination rely on introducing differential external losses to the different competing mode sets, enforcing single‐mode operation at the expense of additional losses to the desirable mode. We show how a parity‐time (PT) symmetric design approach can be employed to achieve single mode lasing in transversely multi‐moded microring resonators. In this type of system, mode selectivity is attained by judiciously utilizing the exceptional point dynamics arising from a complex interplay of gain and loss. The proposed scheme is versatile, robust to deviations from PT symmetry such as caused by fabrication inaccuracies or pump inhomogeneities, and enables a stable operation considerably above threshold while maintaining spatial and spectral purity. The experimental results presented here were obtained in InP‐based semiconductor microring arrangements and pave the way towards an entirely new class of chip‐scale semiconductor lasers that harness gain/loss contrast as a primary mechanism of mode selectivity.

  相似文献   


17.
Narrow‐linewidth lasers are key elements in optical metrology and spectroscopy. Spectral purity of these lasers determines accuracy of the measurements and quality of collected data. Solid state and fiber lasers are stabilized to relatively large and complex external optical cavities or narrow atomic and molecular transitions to improve their spectral purity. While this stabilization technique is rather generic, its complexity increases tremendously moving to longer wavelenghts, to the infrared (IR) range. Inherent increase of losses of optical materials at longer wavelengths hinders realization of compact, room temperature, high finesse IR cavities suitable for laser stabilization. In this paper, we report on demonstration of quantum cascade lasers stabilized to high‐Q crystalline mid‐IR microcavities. The lasers operating at room temperature in the 4.3‐4.6 μm region have a linewidth approaching 10 kHz and are promising for on‐chip mid‐IR and IR spectrometers.

  相似文献   


18.
Metasurfaces, which consist of resonant metamaterial elements in the form of two‐dimensional thin planar structures, retain great capabilities in manipulating electromagnetic wave and potential applications in modifying interaction with fluorescent molecules. The metasurfaces with magnetic responses are favorable to weakening fluorescence quenching while less investigated in controlling fluorescence. In this paper, we demonstrate control over fluorescence emission by engineering the magnetic and electric modes in plasmonic metasurfaces consisting of 45‐nm‐thick gold split‐ring‐resonators (SRRs). The fluorescence emission exhibits an enhancement factor of ∼18 and is predominantly x‐polarized with assistance of the magnetic mode excited by oblique incidence with an x‐polarized electric field. The magnetic and electric modes excited by oblique incidence with a y‐polarized electric field contribute to the rotation of emission polarization with respect to the incident polarization. The results demonstrate manipulating the interaction of fluorescent emitters with different resonant modes of the SRR‐based metasurface at the nanoscale by the polarization of incident light, providing potential applications of metasurfaces in a wide variety of areas, including optical nanosources, fluorescence spectroscopy and compact biosensors.

  相似文献   


19.
Monocrystalline titanium dioxide (TiO2) micro‐spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii m through near‐field time‐domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub‐wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Anisotropic TiO2 micro‐resonators can be used to enhance the interplay of magnetic and electric dipole resonances in the emerging THz all‐dielectric metamaterial technology.

  相似文献   


20.
A mid‐infrared (MIR) supercontinuum (SC) has been demonstrated in a low‐loss telluride glass fiber. The double‐cladding fiber, fabricated using a novel extrusion method, exhibits excellent transmission at 8–14 μm: < 10 dB/m in the range of 8–13.5 μm and 6 dB/m at 11 μm. Launched intense ultrashort pulsed with a central wavelength of 7 μm, the step‐index fiber generates a MIR SC spanning from ∼2.0 μm to 16 μm, for a 40‐dB spectral flatness. This is a fresh experimental demonstration to reveal that telluride glass fiber can emit across the all MIR molecular fingerprint region, which is of key importance for applications such as diagnostics, gas sensing, and greenhouse CO2 detection.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号