首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A recent response on a publication from our team investigating solvent effects on propagation rate coefficients is commented. Among other issues, we point to the fact that the response interprets only a subset of the data provided in our original contribution.

  相似文献   


2.
Diarylbutadiyne derivatives are ideal monomers for providing the π‐electron‐conjugated system of polydiacetylenes (PDAs). The geometrical parameters for diacetylene topochemical polymerization are known. However, control of the molecules under these parameters is yet to be addressed. This work shows that by simply tailoring diarylbutadiyne with amide side‐chain substituents, the arrangement of the substituents and the resulting hydrogen bond framework allows formation of π‐electron‐conjugated PDA.

  相似文献   


3.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


4.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


5.
Using the third‐generation Grubbs catalyst, the living ring‐opening metathesis polymerization of ferrocene/cobalticenium copolymers is conducted with theoretical numbers of 25 monomer units for each block, and their redox and electrochemical properties allow using the Bard–Anson electrochemical method to determine the number of metallocenyl units in each block.

  相似文献   


6.
Well‐defined poly(2,5‐dihexyloxyphenylene‐1,4‐diyl) (PPP) is successfully synthesized by the Negishi catalyst‐transfer polycondensation (NCTP) using dilithium tetra(tert‐butyl)zincate (t Bu4ZnLi2). The obtained PPP possesses the number‐averaged molecular weight (M n) values in the range of 2100–22 000 and the molar‐mass dispersity (Ð M) values in the range of 1.09–1.23. In addition, block copolymers containing PPP and poly(3‐hexylthiophene) (P3HT) segments (PPP‐b‐P3HT) are synthesized to confirm the feasibility of chain extension between the different monomers based on NCTP.

  相似文献   


7.
The formation of redox‐active, totally organic nanoparticles in water is achieved following a strategy similar to that used to form metal nanoparticles. It is based on two fundamental concepts: i) complexation through aromatic–aromatic interactions of a water‐soluble precursor aromatic molecule with polyelectrolytes bearing complementary charged aromatic rings, and ii) reduction of the precursor molecule to achieve stabilized nanoparticles. Thus, formazan nanoparticles are synthesized by reduction of a tetrazolium salt with ascorbic acid using polyelectrolytes bearing benzene sulfonate residues of high linear aromatic density, but cannot be formed in the presence of nonaromatic polyelectrolytes. The red colored nanoparticles are efficiently encapsulated in calcium alginate beads, showing macroscopic homogeneity. Bleaching kinetics with chlorine show linear rates on the order of tenths of milli­meters per minute. A linear behavior of the dependence of the rate of bleaching on the chlorine concentration is found, showing the potential of the nanoparticles for chlorine sensing.

  相似文献   


8.
Via electron paramagnetic resonance (EPR) spectroscopy, the type of radicals occurring during acrylamide (AAm) homopolymerization in aqueous solution is investigated between −5 and +100 °C. The radicals are produced photochemically under stationary conditions. Midchain AAm radicals (MCRs) are clearly identified by EPR which demonstrates that secondary propagating AAm radicals (SPRs) undergo backbiting reactions. Above 50 °C, the fraction of MCRs even exceeds the one of SPRs. The extent of backbiting is however well below the one in butyl acrylate polymerization at identical temperature.

  相似文献   


9.
l ‐Ascorbic acid, commonly known as vitamin C and one of the most important biological compounds, is converted to a α,ω‐diene monomer and subsequently polymerized for the first time by acyclic diene metathesis. Various experimental conditions such as polymerization medium, catalyst type, temperature, and monomer/catalyst ratio are studied. The moderate molecular weight polymers are achieved when the polymerizations are conducted under bulk conditions employing the Grubbs first generation (G1) or Hoveyda–Grubbs second generation catalyst (HG‐2). In the solution case, on the other hand, low molecular weight polymers are obtained regardless of the catalyst type. Moreover, when the catalyst performances are compared, it is found that G1 produces the higher molecular weight as well as higher yield polymers with respect to the HG‐2.

  相似文献   


10.
We report the functionalization of polypyrrole (PPy) with a “sticky” biomolecule dopamine (DA), which mimics the essential component of mussel adhesive protein. PPy is one of the most promising electrically conductive polymers with good biocompatibility. The research findings reveal that the DA functionalization enhances the dispersibility and stability of PPy in water and its film adhesion to substrate surface significantly. The electrical conductivity of PPy increases to a maximum value and then decreases with the increasing DA concentration. An optimal DA to pyrrole (Py) mole ratio is found to be between 0.1 and 0.2, at which both conductivity and adhesion of DA‐functionalized PPy has been improved.

  相似文献   


11.
Polyethers—polymers with the structural element (R'‐O‐R)n in their backbone—are an old class of polymers which were already used at the time of the ancient Egyptians. However, still today these materials are highly important with applications in all areas of our life, reaching from the automotive and paper industry to cosmetics and biomedical applications. In this Review, different aliphatic polyethers like poly(epoxide)s, poly(oxetane)s, and poly(tetrahydrofuran) are discussed. Special emphasis is placed on the history, the polymerization techniques (industrially and in academia), the properties, the applications as well as recent developments of these materials.

  相似文献   


12.
This study demonstrates the growth of long triisopropylsilyethynyl pentacene (TIPS‐PEN) nanofibrils in a thin film of a crystalline polymer, poly(ε‐caprolactone) (PCL). During spin‐coating, TIPS‐PEN molecules are locally extracted around the PCL grain boundaries and they crystallize into [010] direction forming long nanofibrils. Molecular weight of PCL and weight fraction (α) of TIPS‐PEN in PCL matrix are key factors to the growth of nanofibrils. Long high‐quality TIPS‐PEN nanofibrils are obtained with high‐molecular‐weight PCL and at the α values in the range of 0.03–0.1. The long nanofibrils are used as an active layer in a field‐effect organic transistor.

  相似文献   


13.
Polysiloxane‐modified tetraphenylethene (PTPESi) is successfully synthesized by attaching tetraphenylethene (TPE) units onto methylvinyldiethoxylsiloxane and subsequent polycondensation. Introducing polysiloxane into TPE has minimal effect on the photophysical properties and aggregation‐induced emission behavior of TPE. The highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energy levels of PTPESi are located mainly on the tetraphenylethene moieties. The fluorescence intensity and the half width of the emission peak of PTPESi before and after annealing at 120 °C for 12 h are nearly the same, indicating high thermal stability and morphological stability. In addition, use of PTPESi film as a sensor toward the vapor‐phase detection of explosives is also studied and it displays quite high fluorescence quenching efficiency and good reversibility.

  相似文献   


14.
Cationic imidazolium‐functionalized polyethylene is accessible by insertion copolymerization of ethylene and allyl imidazolium tetrafluoroborate (AIm‐BF4) with phosphinesulfonato palladium(II) catalyst precursors. Imidazolium‐substituted repeat units are incorporated into the main chain and the initiating saturated chain end of the linear polymers, rather than the terminating unsaturated chain end. The counterion of the allyl imidazolium monomer is decisive, with the chloride analogue (AIm‐Cl) no polymerization is observed. Stoichiometric studies reveal the formation of an inactive chloride complex from the catalyst precursor. An effect of moderate densities (0.5 mol%) of ionic groups on the copolymers' physical properties is exemplified by an enhanced wetting by water.

  相似文献   


15.
The ruthenium benzimidazolylidene‐based N‐heterocyclic carbene (NHC) complex 4 catalyzes the direct dehydrogenative condensation of primary alcohols into esters and primary alcohols in the presence of amines to the corresponding amides in high yields. This efficient new catalytic system shows a high selectivity towards the conversion of diols to polyesters and of a mixture of diols and diamines to polyamides. The only side product formed in this reaction is molecular hydrogen. Remarkable is the conversion of hydroxytelechelic polytetrahydrofuran ( = 1000 g mol−1)—a polydispers starting material—into a hydrolytically degradable polyether with ester linkages ( = 32 600 g mol−1) and, in the presence of aliphatic diamines, into a polyether with amide linkages in the back bone ( = 16 000 g mol−1).

  相似文献   


16.
A simple and effective airflow method to prepare sandwich‐type block copolymer films is reported. The films are composed of three layers: vertically oriented nanocylinders align in both upper and bottom layers and irregular nanocylinders exist in the bulk of the film. The vertically oriented nanocylinders in both sides can provide high accessibility to ions and ensures the exchange of chemical species between the membrane and external environment, while the irregularly oriented nanocylinders in the middle part of the film can prolong the pathway of ions transportation and enhance ions selectivity.

  相似文献   


17.
Two‐dimensional (2D) palladium nanocube array is achieved on plasma‐etched block copolymer templates, while the well‐aligned nanocubes remain active. Anisotropic nanocubes are site‐selectively assembled on various nanopatterns by capillary force. The nanocube array is proved to be easily tunable, and the dimensional commensurability plays a key role in the configurations of the nanocube assemblies. Not only catalytic nanocube array under confinement but also template for the growth of nanoscale zinc oxide (ZnO) nanorods is exemplified as the potential application of the nanoarray.

  相似文献   


18.
Since the development of supramolecular chemical biology, self‐organised nano‐architectures have been widely explored in a variety of biomedical applications. Functionalized synthetic molecules with the ability of non‐covalent assembly in an aqueous environment are typically able to interact with biological systems and are therefore especially interesting for their use in theranostics. Nanostructures based on π‐conjugated oligomers are particularly promising as theranostic platforms as they bear outstanding photophysical properties as well as drug loading capabilities. This Feature Article provides an overview on the recent advances in the self‐assembly of intrinsically fluorescent nanoparticles from π‐conjugated small molecules such as fluorene or perylene based chromophores for biomedical applications.

  相似文献   


19.
Photoresponsive azobenzene‐containing systems ranging from molecular to macroscopic material levels have greatly been increasing their significance in materials chemistry. This review focuses on the studies on light induced or triggered motions in azobenzene liquid crystalline (LC) polymer films at mesoscopic and microscopic levels. Due to the cooperative nature of liquid crystalline materials, highly efficient photoalignment and photo‐triggered migrating motions are realized in mostly repeated manners. Here, recent advances in surface‐grafted LC polymer brushes, LC block copolymer films, and LC polymer films that exhibit mass migrations are overviewed. Such newly emerged photoresponsive systems are expected to provide new possibilities and applications in polymer thin film technologies.

  相似文献   


20.
Three novel solution‐processable polyimides containing triphenylamine and pendant viologen moieties are prepared from the newly synthesized diamine and three commercially available dianhydrides. The thermally stable polyimide with strong donor–acceptor charge‐transfer possesses write‐once read‐many‐times memory behavior with excellent operation stability. The obtained multicolored electrochromic polymer films reveal ambipolar electrochemical behavior with high optical transmittance contrast of coloration changed from transmissive neutral state to the cyan/magenta/yellow redox states, implying great potential for application in smart window and displays.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号