首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type II photoinitiated self‐condensing vinyl polymerization for the preparation of hyperbranched polymers is explored using 2‐hydroxyethyl methacrylate (HEMA) or 2‐(dimethylamino)ethyl methacrylate (DMAEMA), and methyl methacrylate as hydrogen donating inimers and comonomer, respectively, in the presence of benzophenone and camphorquinone under UV and visible light. Upon irradiation at the corresponding wavelength, the excited photoinitiator abstracts hydrogen from HEMA or DMAEMA leading to the formation of initiating radicals. Depending on the concentration of inimers, type of the photoinitiator, and irradiation time, hyperbranched polymers with different branching densities and cross‐linked polymers are formed.

  相似文献   


2.
A novel one‐component type II polymeric photoinitiator, poly(vinyl alcohol)–thioxanthone (PVA–TX), is synthesized by a simple acetalization process and characterized. PVA–TX enables photopolymerization of methyl methacrylate and acrylamide in both organic and aqueous media. Photopolymerization proceeds even in the absence of a co‐initiator since PVA–TX possesses both chromophoric and hydrogen donating sites in the structure.

  相似文献   


3.
Molecular bottle‐brush functionalized single‐walled carbon nanotubes (SWCNTs) with superior dispersibility in water are prepared by a one‐pot synthetic methodology. Elongating the main‐chain and side‐chain length of molecular bottle‐brushes can further increase SWCNT dispersibility. They show significant enhancement of SWCNT dispersibility up to four times higher than those of linear molecular functionalized SWCNTs.

  相似文献   


4.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


5.
Diarylbutadiyne derivatives are ideal monomers for providing the π‐electron‐conjugated system of polydiacetylenes (PDAs). The geometrical parameters for diacetylene topochemical polymerization are known. However, control of the molecules under these parameters is yet to be addressed. This work shows that by simply tailoring diarylbutadiyne with amide side‐chain substituents, the arrangement of the substituents and the resulting hydrogen bond framework allows formation of π‐electron‐conjugated PDA.

  相似文献   


6.
Metal‐containing polymer hydrogels have attracted increasing interest in recent years due to their outstanding properties such as biocompatibility, recoverability, self‐healing, and/or redox activity. In this short review, methods for the preparation of metal‐containing polymer hydrogels are introduced and an overview of these hydrogels with various functionalities is given. It is hoped that this short update can stimulate innovative ideas to promote the research of metal‐containing hydrogels in the communities.

  相似文献   


7.
Using adaptive soft materials to fabricate microstructured surfaces renders them with tunable topographic feature and thus controllable physical properties. Here, light responsive microstructured surfaces are reported with shape memory and tunable wetting behaviors; the surfaces are covered with micropillar arrays and constructed by lightly crosslinked azo‐containing liquid crystalline network (LCN). UV light irradiation induces 25% contraction in length of the micropillars along their long axes and, as a consequence, the variations of topographic feature and wetting behavior of the surfaces. In addition, the LCNs exhibit shape memory properties, which can freeze the temporary topographic feature of microstructured surfaces (formed under UV irradiation and relatively high temperature) and enable application of their functionalities at mild conditions. This light responsiveness makes it feasible to remotely and precisely tune the local regions of microstructured surfaces, which should broaden the applications of adaptive surfaces in regulating the wetting, optical, and adhesion properties in selected regions.

  相似文献   


8.
Using the third‐generation Grubbs catalyst, the living ring‐opening metathesis polymerization of ferrocene/cobalticenium copolymers is conducted with theoretical numbers of 25 monomer units for each block, and their redox and electrochemical properties allow using the Bard–Anson electrochemical method to determine the number of metallocenyl units in each block.

  相似文献   


9.
Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco‐friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross‐linked by hexamethylene diisocyanate, leading to highly elastic slide‐ring gels.

  相似文献   


10.
Imitating the natural “energy cascade” architecture, we present a single‐molecular rod‐like nano‐light harvester (NLH) based on a cylindrical polymer brush. Block copolymer side chains carrying (9,9‐diethylfluoren‐2‐yl)methyl methacrylate units as light absorbing antennae (energy donors) are tethered to a linear polymer backbone containing 9‐anthracenemethyl methacrylate units as emitting groups (energy acceptors). These NLHs exhibit very efficient energy absorption and transfer. Moreover, we manipulate the energy transfer by tuning the donor–acceptor distance.

  相似文献   


11.
The formation of a poly(2,6‐carbazole) derivative during an electrochemical polymerization process is shown. Comparison of 3,5‐bis(9‐octyl‐9H‐carbazol‐2‐yl)pyridine and 3,5‐bis(9‐octyl‐9H‐carbazol‐3‐yl)pyridine by electrochemical and UV–Vis‐NIR spectroelectrochemical measurements and DFT (density functional theory) calculation prove the formation of a poly(2,6‐carbazole) derivative. Both of the compounds form stable and electroactive conjugated polymers.

  相似文献   


12.
Diselenide‐containing polymers are facilely synthesized from polymers prepared by atom transfer radical polymerization (ATRP). Benefiting from the ATRP technology, this protocol provides a flexible route for controlling the polymer structure, which allows for a great variety of architectures of selenium‐containing polymer materials for applications in various fields. The oxidative and reductive responsive behavior of the obtained diselenide‐containing polymers is also investigated.

  相似文献   


13.
The different mechanisms contributing to adhesion between two polymer surfaces are summarized and described in individual examples, which represent either seminal works in the field of adhesion science or novel approaches to achieve polymer–polymer adhesion. A further objective of this article is the development of new methodologies to achieve strong adhesion between low surface energy polymers.

  相似文献   


14.
Dispersions of short electrospun fibers are utilized for the preparation of nanofiber nonwovens with different weight area on filter substrates. The aerosol filtration efficiencies of suspension‐borne nanofiber nonwovens are compared to nanofiber nonwovens prepared directly by electrospinning with similar weight area. The filtration efficiencies are found to be similar for both types of nonwovens. With this, a large potential opens for processing, design, and application of new nanofiber nonwovens obtained by wet‐laying of short electrospun nanofiber suspensions.

  相似文献   


15.
A new approach to stabilize carbon nanotubes (CNTs) in aqueous solution with a reduction‐responsive water‐soluble polymer is reported. The novel polymer synthesized by a controlled radical polymerization is functionalized with pendant pyrene groups capable of adhering to the surface of CNTs through π–π noncovalent interactions, and labeled with disulfide linkages to exhibit reduction‐responsive cleavage. Upon the cleavage of junction disulfide linkages in a reducing environment, water‐soluble polymers are shed, retaining clean CNT surfaces for electrochemical catalytic reactions.

  相似文献   


16.
In the present contribution, two novel ambient temperature avenues are introduced to functionalize solid cellulose substrates in a modular fashion with synthetic polymer strands (poly(trifluoro ethyl methacrylate), PTFEMA, Mn = 4400 g mol−1, Đ = 1.18) and an Arg‐Gly‐Asp (RGD) containing peptide sequence. Both protocols rely on a hetero Diels–Alder reaction between an activated thiocarbonyl functionality and a diene species. In the first—thermally activated—protocol, the cellulose features surface‐expressed thiocarbonylthio compounds, which readily react with diene terminal macromolecules at ambient temperature. In the second protocol, the reactive ene species are photochemically generated based on a phenacyl sulfide‐decorated cellulose surface, which upon irradiation expresses highly reactive thioaldehyde species. The generated functional hybrid surfaces are characterized in‐depth via ToF‐SIMS and XPS analysis, revealing the successful covalent attachment of the grafted materials, including the spatially resolved patterning of both synthetic polymers and peptide strands using the photochemical protocol. The study thus provides a versatile platform technology for solid cellulose substrate modification via efficient thermal and photochemical ligation strategies.

  相似文献   


17.
Hybrid Pt(platinum)/carbon nanopatterns with an extremely low loading level of Pt catalysts derived from block copolymer templates as an alternative type of counter electrodes (CEs) in dye‐sensitized solar cells (DSSCs) are proposed. DSSCs employing hybrid Pt/carbon with tailored configuration as CEs exhibit higher short‐circuit current and conversion efficiencies as well as stability with a lapse of time compared with conventional cells on the basis of sputtered Pt thin films, evidencing that the new class of hybrid nanostructures possess high potential for cost‐effective electrodes in energy conversion devices.

  相似文献   


18.
Thermoresponsive linear polymers and their corresponding aggregates or nanogels typically show similar thermoresponsive profiles. In this study, the authors demonstrate reversible chemical switching between linear polymers and their cross‐linked nanogels. The linear polymers exhibit sharp thermal transitions typical of common thermoresponsive polymers but the cross‐linked nanogels exhibit “linear” thermal transitions over a relatively broad temperature range. The reversible switching between these two different polymer architectures with distinct thermoresponses represents a unique example of how the responsive properties of smart polymers can be significantly manipulated via polymer architecture engineering.

  相似文献   


19.
Endowing unimolecular soft nanoobjects with biomimetic functions is attracting significant interest in the emerging field of single‐chain technology. Inspired by the compartmentalized structure and polymerase activity of metalloenzymes, copper‐containing compact nanoglobules have been designed, synthesized, and characterized endowed with metalloenzyme mimicking characteristics toward controlled synthesis of water‐soluble polymers and thermoresponsive hydrogels. When compared to metalloenzymes, artificial nanoobjects endowed with metalloenzyme mimicking characteristics offer increased stability against thermal changes and reduced degradability by hydrolytic enzymes.

  相似文献   


20.
The synthesis of an ambipolar π‐conjugated copolymer consisting of alternating diketopyrrolopyrrole and tetrafluorobenzene via direct arylation polymerization (DAP) is reported. Two different combinations of monomers are investigated under various catalytic conditions for DAP. The target polymer obtained under an optimized catalytic condition shows minimal structural defects, a number‐average molecular weight of 33.2 kDa, and balanced electron and hole mobility of 1 × 10−2 cm2 V−1 S−1 in the organic field‐effect transistors fabricated and tested under ambient conditions.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号