首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Halo‐ester‐functionalized poly(ethylene glycol)s (PEGs) are successfully prepared by the transesterification of alkyl halo‐esters with PEGs using Candida antarctica lipase B (CALB) as a biocatalyst under the solventless conditions. Transesterifications of chlorine, bromine, and iodine esters with tetraethylene glycol monobenzyl ether (BzTEG) are quantitative in less than 2.5 h. The transesterification of halo‐esters with PEGs are complete in 4 h. 1H and 13C NMR spectroscopy with MALDI‐ToF and ESI mass spectrometry confirm the structure and purity of the products. This method provides a convenient and “green” process to effectively produce halo‐ester PEGs.

  相似文献   


2.
A novel and non‐cytotoxic self‐healing supramolecular elastomer (SE) is synthesized with small‐molecular biological acids by hydrogen‐bonding interactions. The synthesized SEs behave as rubber at room temperature without additional plasticizers or crosslinkers, which is attributed to the phase‐separated structure. The SE material exhibits outstanding self‐healing capability at room temperature and essential non‐cytotoxicity, which makes it a potential candidate for biomedical applications.

  相似文献   


3.
We report the first mass spectrometric analysis of poly(ionic liquid)s (PILs) containing weakly coordinating anions introduced by a fast, simple, and quantitative postmodification method on the example of the hydrophilic, well‐defined poly(vinylbenzylpyridinium chloride) p([VBPy]Cl) species, analyzed with an in‐source collision induced dissociation‐Orbitrap mass spectrometry (MS) protocol. Using the MS approach allows for the precise structural elucidation of ion‐exchanged p([VBPy]Cl) utilizing AgX (X = NO3, CF3CO2, BF4) salts. The anion exchange is shown to be quantitative – without observing residual chlorinated PIL – on rapid time scales, using only filtration as a standard procedure during sample preparation. In addition, the influence of weakly coordinating anions on the ionization behavior of PILs is studied in detail.

  相似文献   


4.
The different mechanisms contributing to adhesion between two polymer surfaces are summarized and described in individual examples, which represent either seminal works in the field of adhesion science or novel approaches to achieve polymer–polymer adhesion. A further objective of this article is the development of new methodologies to achieve strong adhesion between low surface energy polymers.

  相似文献   


5.
Several pyrene‐based polyphenylene dendrimers (PYPPDs) with different peripheral chromophores (PCs) are synthesized and characterized. Deep blue emissions solely from the core are observed for all of them in photoluminescence spectra due to good steric shielding of the core and highly efficient surface‐to‐core Förster resonant energy transfers (FRETs). Device performances are found in good correlation with the energy gaps between the work function of the electrodes and the frontier molecular orbital (FMO) levels of the PCs. Pure blue emission, luminance as high as 3700 cd m−2 with Commission Internationale de l'Éclairage 1931 (CIExy) = (0.16, 0.21), and a peak current efficiency of 0.52 cd A−1 at CIExy = (0.17, 0.20) are achieved. These dendrimers are among the best dendritic systems so far for fluorescent blue light‐emitting materials.

  相似文献   


6.
Cyclic multiblock polymers with high‐order blocks are synthesized via the combination of single‐electron transfer living radical polymerization (SET‐LRP) and copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). The linear α,ω‐telechelic multiblock copolymer is prepared via SET‐LRP by sequential addition of different monomers. The SET‐LRP approach allows well control of the block length and sequence as A‐B‐C‐D‐E, etc. The CuAAC is then performed to intramolecularly couple the azide and alkyne end groups of the linear copolymer and produce the corresponding cyclic copolymer. The block sequence and the cyclic topology of the resultant cyclic copolymer are confirmed by the characterization of 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry.

  相似文献   


7.
A novel diblock copolymer consisting of poly(vinylferrocene) (PVFc) and poly(N,N‐diethylacrylamide) (PDEA) is synthesized via a combination of anionic and RAFT polymerization. The use of a novel route to hydroxyl‐end‐functionalized metallopolymers in anionic polymerization and subsequent esterification with a RAFT agent leads to a PVFc macro‐CTA ( = 3800 g mol−1; Đ = 1.17). RAFT polymerization with DEA affords block copolymers as evidenced by 1H NMR spectroscopy as well as size exclusion chromatography (6400 ≤ ≤ 33700 g mol−1; 1.31 ≤ Đ 1.28). Self‐assembly of the amphiphilic block copolymers in aqueous solution leads to micelles as shown via TEM. Importantly, the distinct thermo‐responsive and redox‐responsive character of the blocks is probed via dynamic light scattering and found to be individually and repeatedly addressable.

  相似文献   


8.
Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas‐liquid microfluidic reactor with top‐down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

  相似文献   


9.
Supramolecular materials based on host–guest interactions should exhibit high selectivity and external stimuli‐responsiveness. Among various stimuli, redox and photo stimuli are useful for its wide application. An external stimuli‐responsive adhesive system between CD host‐gels (CD gels) and guest molecules modified glass substrates (guest Sub) is focused. Here, the selective adhesion between host gels and guest substrates where adhesion depends on molecular complementarity is reported. Initially, it is thought that adhesion of a gel material onto a hard material might be difficult unless many guest molecules modified linear polymers immobilize on the surface of hard materials. However, reversible adhesion of the CD gels is observed by dissociating and re‐forming inclusion complex in response to redox and photo stimuli.

  相似文献   


10.
A series of fluorene‐based conjugated polymers containing the aggregation‐induced emissive (AIE)‐active tetraphenylethene and dicarboxylate pseudocrown as a receptor exhibits a unique dual‐mode sensing ability for selective detection of lead ion in water. Fluorescence turn‐off and turn‐on detections are realized in 80%–90% and 20% water in tetrahydrofuran (THF), respectively, for lead ion with a concentration as low as 10−8 m .

  相似文献   


11.
Development of self‐healing polymers with spontaneous self‐healing capability and good mechanical performance is highly desired and remains a great challenge. Here, mechanical robust and self‐healable supramolecular hydrogels have been fabricated by using poly(2‐dimethylaminoethyl methacrylate) brushes modified silica nanoparticles (SiO2@PDMAEMA) as multifunctional macrocrosslinkers in a poly(acrylic acid) (PAA) network structure. The SiO2 nanoparticles serve as noncovalent crosslinkers, dissipating energy, whereas the electrostatic interactions between cationic PDMAEMA and anionic PAA render the hydrogel self‐healing property. This process provides a simple and broadly applicable strategy to produce mechanical strong and self‐healable materials.

  相似文献   


12.
Integrating irreplaceable features of both covalent chemistry and noncovalent interactions into a single entity to maximize the applicability is highly desired. Here, a discovery of this type of hybrid, developed by Stupp and co‐workers, is developed, where a synergistic combination of covalent and noncovalent compartments enables them to assemble by each other perfectively. The covalent compartments can grow into polymer chains assisted by a supramolecular compartment. The supramolecular compartments can be reversibly removed and re‐formed to reconstitute the hybrid structure. The obtained soft materials can serve as functional platforms for molecular delivery or self‐repairing materials.

  相似文献   


13.
A droplet microfluidics strategy to rapidly synthesize, process, and screen up to hundreds of thousands of compositionally distinct synthetic hydrogels is presented. By programming the flow rates of multiple microfluidic inlet channels supplying individual hydrogel building blocks, microgel compositions and properties are systematically modulated. The use of fluorescent labels as proxies for the physical and chemical properties of the microgel permits the rapid screening and discovery of specific formulations through fluorescence microscopy or flow cytometry. This concept should accelerate the discovery of new hydrogel formulations for various novel applications.

  相似文献   


14.
Special characteristics of wrinkles such as a scattering source and a high surface area are finding use in high‐tech applications. UV‐crosslinkable prepolymers are occasionally used for fabricating wrinkled films. Wavelength of the wrinkles formed from the prepolymers is several tens and hundreds of micrometers. Here, a UV‐crosslinkable liquid prepolymer is synthesized to spontaneously form wrinkle structures in the order of several micrometers. Double layers with a very thin hard skin and a soft and contractible foundation are formed at the same time, by ensuring that all the absorbance wavelengths of the photoinitiator are shorter than the minimum wavelength at which the prepolymer is transparent. The rate of photo‐crosslinking reaction, Rp, is also found to affect the thickness of the skin and foundation layers at the early UV‐curing stage. The first‐order apparent rate constant, kapp, is between ≈0.20 and ≈0.69 s−1 for the wrinkle formation. This wrinkle structures can be simply modulated by changing Rp.

  相似文献   


15.
Cross‐linked azobenzene liquid‐crystalline polymer films with a poly(oxyethylene) backbone are synthesized by photoinitiated cationic copolymerization. Azobenzene moieties in the film surface toward the light source are simultaneously photoaligned during photopolymerization with unpolarized 436 nm light and thus form a splayed alignment in the whole film. The prepared films show reversible photoinduced bending behavior with opposite bending directions when different surfaces of one film face to ultraviolet light irradiation.

  相似文献   


16.
A thiofunctional thiazolidine is introduced as a new low‐molar‐mass building block for the introduction of cysteine residues via a thiol‐ene reaction. Allyl‐functional polyglycidol (PG) is used as a model polymer to demonstrate polymer‐analogue functionalization through reaction with the unsaturated side‐chains. A modified trinitrobenzenesulfonic acid (TNBSA) assay is used for the redox‐insensitive quantification and a precise final cysteine content can be predetermined at the polymerization stage. Native chemical ligation at cysteine‐functional PG is performed as a model reaction for a chemoselective peptide modification of this polymer. The three‐step synthesis of the thiofunctional thiazolidine reactant, together with the standard thiol‐ene coupling and the robust quantification assay, broadens the toolbox for thiol‐ene chemistry and offers a generic and straightforward approach to cysteine‐functional materials.

  相似文献   


17.
In order to improve the stability of polymeric vesicles, supramolecular vesicles are developed via self‐assembly of the inclusion of γ‐cyclodextrin (γ‐CD) and 1‐pyrenemethyl palmitate (Py‐pal). The inclusion has one hydrophilic head and double hydrophobic tails, which looks like the phospholipid. From the transmission electron microscopy (TEM) image, it can be observed that the average diameter of supramolecular vesicles is approximately 55 nm and there is a huge cavity in supramolecular vesicles. Due to the photo‐breakable ester of Py‐pal, supramolecular vesicles are broken under UV irradiation. Supramolecular vesicles are used as UV‐responsive drug carriers to release the hydrophilic drug such as doxorubicin hydrochloride (DOX•HCl).

  相似文献   


18.
Electrospinning is a well‐known technique for the preparation of scaffolds for biomedical applications. In this work, a continuous electrospinning method for gel fiber preparation is presented without a spinning window. As proof of concept, the preparation of poly(aspartic acid)‐based hydrogel fibers and their properties are described by using poly(succinimide) as shell polymer and 2,2,4(2,4,4)‐trimethyl‐1,6‐hexanediamine as cross‐linker in the core of the nozzle. Cross‐linking takes place as the two solutions get in contact at the tip of the nozzle. The impact of solution concentrations and feeding rates on fiber morphology, proof of the presence of cross‐links as well as pH sensitivity after the transformation of the poly(succinimide)‐based material to poly(aspartic acid) is presented.

  相似文献   


19.
New monolithic materials comprising zeolitic imidazolate framework (ZIF‐8) located on the pore surface of poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) monolith previously functionalized with N‐(3‐aminopropyl)‐imidazole have been prepared via a layer‐by‐layer self‐assembly strategy. These new ZIF‐8@monolith hybrids are used as solid‐phase carriers for enzyme immobilization. Their performance is demonstrated with immobilization of a model proteolytic enzyme trypsin. The best of the conjugates enable very efficient digestion of proteins that can be achieved in mere 43 s.

  相似文献   


20.
Swell! Superabsorbent, mechanically robust, high‐porosity hydrogels based on poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) have been successfully synthesized by templating within high internal phase emulsions (HIPEs). These hydrogel polyHIPEs (HG‐PHs) exhibit unusually high uptakes of water and of artificial urine through structure‐ and crosslinking‐dependent hydrogel‐swelling‐driven void expansion. An HG‐PH with 3.1 mmol g−1 of highly accessible sulfonic acid groups exhibits a 7 meq NaOH ion exchange capacity per gram polymer and rapid dye absorption. The highly swollen HG‐PHs do not fail at compressive strains of up to 60%, they retain water and recover their shapes upon the removal of stress. Unusually, the dry hydrogels have relatively high compressive moduli and achieve relatively high stresses at 70% strain.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号