首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The laser excitation wavelength is an important parameter in obtaining Raman spectra from drugs‐of‐abuse. This article compares the effect of near infrared wavelengths, 785 nm, using both benchtop and portable instrumentation and benchtop 1064 nm on the Raman spectra of seized drugs‐of‐abuse, including cocaine hydrochloride, cocaine freebase (crack), methylenedioxymethamphetamine (‘ecstasy’), amphetamine, diamorphine (heroin) and cannabis. The significant benefit of using 1064 nm for the interrogation of this type of sample is highlighted. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Multiwalled carbon nanotubes (MWCNTs) are grafted with gold (Au) nanoparticles of different sizes (1–12 and 1–20 nm) to form Au–MWCNT hybrids. The Au nanoparticles pile up at defect sites on the edges of MWCNTs in the form of chains. The micro‐Raman scattering studies of these hybrids were carried using visible to infrared wavelengths (514.5 and 1064 nm). Enhanced Raman scattering and fluorescence is observed at an excitation wavelength of 514.5 nm. It is found that the graphitic (G) mode intensity enhances by 10 times and down shifts by approximately 3 cm−1 for Au–MWCNT hybrids in comparison with pristine carbon nanotubes. This enhancement in G mode due to surface‐enhanced Raman scattering effect is related to the interaction of MWCNTs with Au nanoparticles. The enhancement in Raman scattering and fluorescence for large size nanoparticles for Au–MWCNTs hybrids is corroborated with localized surface plasmon polaritons. The peak position of localized surface plasmons of Au nanoparticles shifts with the change in environment. Further, no enhancement in G mode was observed at an excitation wavelength of 1064 nm. However, the defect mode (D) mode intensity enhances, and peak position is shifted by approximately 40 cm−1 to lower side at the same wavelength. The enhanced intensity of D mode at 1064 nm excitation wavelength is related to the double resonance phenomenon and shift in the particular mode occurs due to more electron phonon interactions near Fermi level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Gout is a disease process where the nucleation and growth of crystals in the synovial fluid of joints elicit painful arthritis‐like symptoms. Raman spectroscopy is evolving as a potential diagnostic tool in identifying such crystals; however, attainment of sufficient Raman signal while overcoming the background fluorescence remains as a major challenge. The current study focused on assessing whether excitation in 532–700 nm range will provide greater signal intensity than the standard 785 nm while not being impeded by background fluorescence. We characterized the fluorescence spectra, absorption spectra and Raman spectra of synovial fluid from patients who presented ‘gout‐like symptoms’ (symptomatic) and controls (asymptomatic). A digestion and filtration method was developed to isolate crystals from synovial fluid while reducing the organic burden. Spectral profile and photobleaching dynamics during Raman spectroscopy were observed under an excitation wavelength range spanning 532 to 785 nm. Absorbance and fluorescence profiles indicated the digestion and filtration worked effectively to extract crystals from symptomatic synovial fluid without introducing additional fluorescence. Raman spectral analyses at 532 nm, 660 nm, 690 nm and 785 nm indicated that both asymptomatic and symptomatic samples had significant levels of fluorescence at excitation wavelengths below 700 nm, which either hindered the collection of Raman signal or necessitated prolonged durations of photobleaching. Raman‐based diagnostics were more feasible at the longest excitation wavelength of 785 nm without employing photobleaching. This study further demonstrated that a near‐infrared (NIR) OEM‐based lower‐cost Raman system at 785 nm excitation has sufficient sensitivity to identify crystals isolated from the synovial fluid. In conclusion, while lower excitation wavelengths provide greater signal, the fluorescence necessitates NIR wavelengths for Raman analysis of crystal species observed in synovial aspirates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Surface‐enhanced Raman scattering (SERS) spectra of Ag@polypyrrole (PPy) nanoparticles with both 488 and 1064 nm excitation were investigated. Experimental results as well as theoretical analysis demonstrated that electromagnetic (EM) enhancement and charge transfer (CT) both rebounded to the SERS effect of Ag@PPy nanoparticles. When near‐IR excitation (1064 nm) was used for the SERS measurements, the contribution from CT was amplified relative to that from EM because the energy of the near‐IR excitation is far from the surface plasmon resonance of the nanosized Ag particles. The increased doping level of PPy, leading to optimal energy matching between the Fermi levels of the Ag nanoparticles and the energy levels in PPy molecules, could obviouslyenhance the SERS signal. These results suggested that the SERStechnique wasan effective tool for investigating the doping effect and interface interaction in metal‐conductingpolymer composite nanoparticles. In particular, the SERS technique with near‐IR excitation could give more information regarding the contribution of the charge‐transfer mechanism to the spectral enhancement of this kind of system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
李晓峰  宋开俊  刘如彪  杨文波 《光子学报》2014,40(10):1464-1468
利用785 nm波长激光作为激发源,测量了超二代微光像增强器Na2KSb(Cs)多碱光电阴极的荧光谱.试验中发现该荧光谱不是一条光滑的高斯型曲线,而是一条在高斯型荧光谱上叠加了一定频率间隔小锯齿峰的曲线.经实验验证和理论分析证明该荧光谱上的小锯齿峰是一种干涉条纹,与超二代微光像增强器的结构有关.干涉条纹之间的间距与相邻两干涉峰波长的乘积成正比,与超二代微光像增强器的近贴聚焦距离成反比.干涉条纹调制度大小与Na2KSb(Cs)多碱光电阴极的厚度成反比.通过测量超二代微光像增强器Na2KSb(Cs)多碱光电阴极荧光谱上两相邻干涉条纹的间距和调制度,就可以测量或比较出不同超二代微光像增强器Na2KSb(Cs)多碱光电阴极的膜厚、近贴聚焦距离.研究结果对提高超二代微光像增强器阴极灵敏度和分辨力提供了一个有效的分析手段.  相似文献   

6.
Early cancer detection is the central and most important factor for allowing successful treatment and resultant positive long‐term patient outcomes. Recently, optical techniques have been applied to this purpose, although each has inherent limitations. In particular, Raman spectroscopy applied in the pathological diagnosis of cancerous tissues has received increasing attention, with the merit of being highly sensitive to the biochemical alterations in tissue compositions and applicable in vivo. Nevertheless, its application has been impeded by the high background intensity, which masks the Raman signal of biological molecules. In this work, the influence of laser excitation wavelength (785 vs. 830 nm) and optical mode (single mode vs. multimode) on the background intensity of fresh human tissues was studied. Based on the results, laser with 830 nm excitation demonstrated better background reduction than that with 785 nm excitation for the same optical mode, but the Raman signal intensity was conversely reduced, and the signal‐to‐noise ratio (SNR) not improved. In contrast, by comparing single‐mode and multimode 785 nm excitations, it was shown that the single‐mode laser with its smaller beam waist and beam propagation factor had better background reduction ability and an improvement of the SNRs. It is speculated that this decrease in background intensity comes from the effect of the optical mode on the Mie scattering from the biological tissue. High‐quality spectra based on a careful selection of both laser excitation wavelength and optical mode will benefit Raman measurements in further research focusing on spectral interpretation and histopathological correlation ultimately aimed toward intraoperative applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The identification of organic colorants in works of art (such as dyes on textiles or organic pigments) by Raman spectroscopy is generally limited by the presence of a strong fluorescence background. In this paper, the effectiveness of minimizing fluorescence in the analysis of Cape Jasmine (Gardenia augusta L.) by dispersive Raman spectroscopy at three different excitation wavelengths (633, 785 and 1064 nm) and by surface‐enhanced Raman spectroscopy (SERS) with and without acid hydrolysis is evaluated and compared. It is shown that these vibrational techniques offer an alternative analytical approach, when, as is particularly the case of Cape Jasmine, sample preparation procedures that are routinely applied for natural organic dyes and pigments cause alterations that lead to low sensitivity in the more classical high‐performance liquid chromatography‐photodiode array (HPLC‐PDA) analytical protocols. Samples of the yellow dye G. augusta L. in the following forms were analyzed: dyed on alum mordanted wool, dyed on nonmordanted and alum mordanted silk, pigment precipitated on hydrated aluminum oxide, extract mixed with a protein binder and painted on glass, and as a water‐based glaze applied on a mock‐up of a typical Chinese wall‐painting. Raman bands at 1537, 1209 and 1165 cm−1 are identified as discriminating markers for the carotenoid colorant components crocetin and crocin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
李晓峰  杨文波  王俊  邱永生 《光子学报》2014,41(12):1435-1440
本文介绍了多碱光电阴极的特点及其在微光像增强器中的应用,叙述了光致荧光的原理,探索了利用光致荧光方法来研究多碱阴极Na2KSb膜层电子跃迁几率的方法,并测量了两个不同灵敏度多碱阴极的荧光谱及同一个多碱阴极在工作和非工作两种状态下的荧光谱.测试结果表明,多碱阴极的荧光强度与其电子跃迁的几率及阴极灵敏度成正比,同时多碱阴极在工作状态下,荧光强度比非工作状态下有所降低,原因是一部分跃迁电子逸出多碱阴极产生光电发射,而这部分电子不再回到基态,因此不再发出荧光.另外本文还测量了多碱阴极在不同波长激光激发条件下的荧光谱.结果表明,长波激发与短波激发相比,长波激发所获得的荧光强度更高,这说明长波激发产生跃迁电子的几率高,同时荧光谱峰值波长与激光波长的偏移较小,因此跃迁电子数多且能量损失小,有利于光电发射.将多碱阴极的荧光谱与多碱阴极的量子效率相比较,看出跃迁电子数量和所处能级这两个对光电发射过程有影响的关键因素中,能级因素对光电发射过程的影响更大.但对多碱阴极而言,由于短波激发时的电子跃迁几率低于长波激发时的电子跃迁几率,跃迁电子扩散过程中的能量损失较大,因此短波的量子效率随波长的增加而增加.实践证明,光致荧光是研究多碱阴极光电发射过程的一种有效手段,通过对多碱阴极荧光谱的研究,进一步揭示了多碱阴极的光电发射的机理,为进一步改进工艺和提高多碱阴极的灵敏度提供了重要的参考价值.  相似文献   

9.
Many trace chemical analyses are being transitioned from the lab to the field, among which is surface‐enhanced Raman spectroscopy. Although initial portable Raman analyzers primarily employ 785 nm laser excitation, recent studies suggest longer wavelengths, with an appropriate surface‐enhanced Raman‐active substrate, may provide equal sensitivity. Furthermore, 1550 nm excitation may provide added safety for the user, in that permanent retina damage does not occur. Here, we show that a reasonable enhancement factor can be obtained for melamine using 1550 nm laser excitation that is nearly equivalent to those obtained using 785 and 1064 nm laser excitation. We also demonstrate that a number of other chemicals of interest can be measured by 1550 nm surface‐enhanced Raman scattering, albeit only modest sensitivity is achieved because of instrument limitations, not enhancement factors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we present a portable shifted excitation Raman difference spectroscopy (SERDS) system applied in outdoor experiments. A dual‐wavelength diode laser emitting at 785 nm is used as excitation light source. The diode laser provides two individually controllable excitation lines at 785 nm with a spectral distance of about 10 cm−1 for SERDS. This monolithic light source is implemented into a compact handheld Raman probe. Both components were developed and fabricated in‐house. SERDS measurements are performed in an apple orchard, and apples and green apple leafs are used as test samples. For each excitation wavelength, a single Raman spectrum is measured with 50 mW at the sample. Strong background interference from ambient daylight and laser‐induced fluorescence obscure the Raman signals. SERDS efficiently separates the wanted Raman signals from the disturbing background signals. For the Raman spectroscopic investigations of green leafs, one accumulation with an exposure time of 0.2 s was used for each excitation wavelength to avoid detector saturation. An 11‐fold improvement of the signal‐to‐background noise is achieved using SERDS. The results demonstrate the suitability of the portable SERDS system for rapid outdoor Raman investigations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
FT Raman spectroscopy and micro‐Raman spectroscopy with lasers of three different wavelengths (1064 nm, 785 nm and 532 nm) were used for analysis of reference samples of natural clay pigments including white clay minerals (kaolinite, illite, montmorillonite), green earths (glauconite and celadonite) and red earths (natural mixtures of white clay minerals with hematite). In addition, eight micro‐samples obtained from historical paintings containing clay pigments in ground and colour layers have been examined. Powder X‐ray diffraction and micro‐diffraction were used as supplementary methods. It was found that laser operating at 1064 nm provided the best quality Raman spectra for distinguishing different white clay minerals, but the spectra of green and red earths were affected by strong fluorescence caused by the presence of iron. Green earth minerals could be easily distinguished by 532 or 785 nm excitation lasers, even in small concentrations in the paint layers. On the other hand, when anatase (TiO2) or iron oxides (such as hematite) were present as admixtures (both are quite common, particularly in red earths), the collection of characteristic spectra of clay minerals which form the main component of the layer was hindered or even prevented. Another complicating factor was the fluorescence produced by organic binders when analysing the micro‐samples of artworks. In those cases, it is always necessary to use powder X‐ray micro‐diffraction to avoid misleading interpretations of the pigment's composition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
不同波长激发光对血清荧光光谱影响的实验研究   总被引:2,自引:0,他引:2  
采用日本岛津荧光光度计RF5301,研究了血清的荧光光谱与激发光波长的关系。实验结果表明:在不同波长的紫外光激励下,血清产生的荧光光谱线型及峰值波长基本相同,与激励光波长无关,但荧光峰强度随激励光波长变化而变化。血清的荧光光谱有两个较强的荧光发射区,其中第一个发射区处于300~410 nm,第二个发射区处于410~530 nm。当激发光波长小于310 nm,荧光主要集中在第一发射区,荧光峰位于330和370 nm处,并产生竞争现象。当激发光波长大于250 nm时,只出现330 nm处的荧光峰,其最佳激励光波长为300 nm;当激发光波长大于320 nm,第一发射区的荧光变弱,在第二发射区的荧光变强,荧光峰位于452 nm。此研究为血液的光谱特性研究提供了实验依据,对光诱导荧光光谱诊断技术中激发光波长的选择具有一定的参考价值。  相似文献   

13.
A new Raman spectroscopic setup for in situ characterization of catalytic materials based on a tunable laser system and a confocal Raman microscope is described. The laser excitation wavelength is variable over a broad range from deep ultraviolet (UV) to near‐infrared allowing for targeted use of Raman diagnostics for catalyst characterization. By utilization of resonance effects, the sensitivity of the method can be strongly increased. The potential of the setup is illustrated by new in situ Raman results on dispersed vanadium oxide catalysts obtained at 217.5 and 280 nm UV laser excitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Multi‐walled carbon nanotube (MWCNT) filters have been recently synthesised which have specific molecular filtering capabilities and good mechanical strength. Optical and scanning electron microscopy (SEM) reveals the formation of highly aligned arrays of bundles of carbon nanotubes having lengths up to 500 µm. The Raman spectra of this material along with four other carbonaceous materials, commercially available single‐walled carbon nanotubes (SWCNTs) and MWCNTs, graphitised porous carbon (Carbotrap) and graphite have been recorded using two‐excitation wavelengths, 532 and 785 nm, and analysed for band positions and shape with special emphasis paid to the D‐, G‐ and G′‐bands. A major difference between the different MWCNT varieties analysed is that G‐bands in the MWCNT filters exhibit almost no dispersion, whereas the other MWCNTs show a noticeable dispersive behaviour with a change in the excitation wavelength. Spectral features similar to those of the MWCNT filter varieties were observed for the Carbotrap material. From the line shape analysis, the intensity ratio, ID/IG, of the more ordered MWCNT filter material using the integral G‐band turns out to be two times lower than that of the less ordered MWCNT filter product at both excitation wavelengths. This parameter can, therefore, be used as a measure of the degree of MWCNT alignment in filter varieties, which is well supported also by our SEM study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
两种激发波长下蔬菜水果的拉曼光谱对比研究   总被引:7,自引:0,他引:7  
本文通过改变不同的激光光源波长,测试分析了一系列蔬菜水果表面的拉曼谱。比较514.5nm和1064nm波长下的拉曼谱,发现514.5nm激发下许多蔬菜水果的拉曼谱均出现胡萝卜素的共振拉曼光谱,同时有很强的光荧光。更换成1064nm的近红外激光波长后,基本消除了光荧光和共振效应的影响,可用来测量蔬菜水果的有效成分,而514.5nm激发下只出现胡萝卜素的光谱,为区分蔬菜水果表面的外来物质,如农药,提供了很大的方便。  相似文献   

16.
The spectral characteristics of acetonitrile solutions of 4′-(diethylamino)-3-hydroxyflavone dye with dual fluorescence are studied under selective excitation. This dye is a structural analog of 3-hydroxyflavone and exhibits excited-state proton transfer, which, in contrast to 3-hydroxyflavone, has a thermodynamic rather than a kinetic character. The fluorescence spectra at different excitation photon energies and the excitation spectra of different fluorescence bands are studied. It is found that the intensity ratio of the normal and tautomeric fluorescence bands lying near 507 and 570 nm, respectively, depends on the excitation wavelength, namely, this ratio is 1.45 and almost does not change in the region of the main absorption band (370–420 nm), while, in the region of the second singlet band (near 280 nm), it decreases to 1.15. This can be explained by an increase in the probability of proton transfer with formation of a tautomeric form in the case of excitation into the second band. Another interesting feature is the existence of a latent third emission band peaked at 535 nm, which was found and reliably recorded upon excitation at wavelengths of 470–500 nm. Addition of water quenches this emission, which indicates that it belongs to the anionic form of the dye.  相似文献   

17.
A variety of laser-based standoff techniques are currently being developed for the detection of explosives. Many approaches focus on the detection of NO as an indicator for the presence of nitro-based explosives. One of these approaches uses lasers to vaporize the explosive molecules residing at or near a surface, photo-dissociate the molecules resulting in vibrationally hot NO, and then perform laser-induced fluorescence on the vibrationally hot NO. Most related reports have focused on using 236 nm or 247–248 nm for the laser excitation of vibrationally hot NO. In addition, a recent report suggests the use of 532 nm to desorb, vaporize, and photo-fragment explosive samples. We report here on energy transfer from laser-excited N2 to NO and its consequences for the detection of nitro-based explosives. A potential interference mechanism was found for using 532 nm and 236 nm. The interference mechanism is based upon multi-photon excitation (532 nm) or two-photon excitation (236 nm) into excited states of molecular nitrogen and subsequent energy transfer from nitrogen to NO, followed by NO luminescence. Such interference mechanisms highlight the complexity of the explosive detection problem and the need for complementary approaches to improve the detection capabilities.  相似文献   

18.
A biochemical characterization of pathologies in biological tissue can be provided by Raman spectroscopy. Often, the raw spectrum is severely affected by fluorescence interference. We report and compare various spectra‐processing approaches required for the purification of Raman spectra from heavily fluorescence‐interfered raw spectra according to the shifted‐excitation Raman difference spectroscopy method. These approaches cover the entire spectra‐processing chain from the raw spectra to the purified Raman spectra. In detail, we compared (1) area normalization versus z‐score normalization, (2) direct reconstruction of the difference spectra versus reconstruction of zero‐centered difference spectra and (3) collective baseline correction of the reconstructed spectra versus piecewise baseline correction of the reconstructed spectra and, finally, (4) analyzed the influence of the shift of the excitation wavelength on the quality of the reconstructed spectra. Statistical analysis of the spectra showed that – in our experiments – the best results were obtained for the z‐score normalization before subtraction of the normalized spectra, followed by zero‐centering of the difference spectra before reconstruction and a piecewise baseline correction of the pure Raman spectra. With our equipment, a wavelength shift from 784 to 785 nm provided reconstructed spectra of best quality. The analyzed specimens were different tissue types of pigs, tissue from the oral cavity of humans and a model solution of dye dissolved in ethanol. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd.  相似文献   

19.
Raman spectroscopy based on the 1064‐nm laser excitation was suggested as a handy non‐invasive technique allowing to quickly determine sugar content in honey and similar food products. In the present study, the green 532‐nm laser radiation is explored instead as it provides higher‐quality spectra in a shorter time. The sample fluorescence was quenched by purification with activated carbon. For control mixture decomposition of Raman spectra to standard subspectra led to a typical error of the sugar content of 3%. Raman optical activity (ROA) spectra that could be measured at the shorter excitation wavelength as well provided a lower accuracy (~8%) than the Raman spectra because of instrumental sensitivity and noise limitations. The results show that Raman spectroscopy provides elegant and reliable means for fast analyses of sugar‐based food products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Recently, we have reported on the characterization of various carbonaceous materials including multiwalled carbon nanotube (MWCNT) filters, which have specific molecular filtering capabilities and good mechanical strength and can be produced in bulk as highly aligned arrays of bundles of CNTs. We have extended our studies using Fourier transform‐Raman spectroscopy with 1064 nm excitation wavelength and a rotating sample holder in the region 1000–2800 cm−1, in addition to 532 and 785 nm, which were used for Raman excitation in our previous study. Raman spectra were analyzed for band positions and line shape with special emphasis on the D‐, G‐ and G′‐ bands. For the single‐walled species, Carbotrap and graphite spectra were also recorded with 488 nm excitation. A dispersion study has been made from the Raman data available with the different excitation wavelengths. Slight band shifts and band broadening could be observed under the two sample conditions, one with the stationary sample and the other with sample rotation. The spectral changes are related to the excessive heating caused in a stationary sample by laser irradiation. Based on our findings in this study combined with our earlier study, we can state that only a careful line shape analysis and study of intensity pattern of the D‐ and G‐Raman bands under well‐defined measurement conditions lends itself as a good measure of degree of alignment in the MWCNT bundles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号