首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco‐friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross‐linked by hexamethylene diisocyanate, leading to highly elastic slide‐ring gels.

  相似文献   


2.
A facile and versatile approach to constructing colorless surface coatings based on green tea polyphenols is reported, which can further act as a photoinitiating layer to initiate radical polymerization. These colorless green tea polyphenol coatings are capable of successfully photografting polymer brushes, and the resulting polymer brush patterns show spatial shape adjustability by masked UV irradiation. Both surface modifications and photografted polymer brushes do not alter the original color of the substrates. This method could be promising for the development of surface modifications.

  相似文献   


3.
The combination of external potential dynamics and Brownian dynamics is introduced to study the kinetics of orientational ordering in block copolymer/superparamagnetic nanoparticle composites where the particles are smaller than the domain spacing and preferentially segregate into one block of the copolymer. This simulation method accounts for both excluded volume interactions and dipolar interactions between particles to quantify alignment kinetics. Two‐dimensional simulations reveal that higher dipolar interaction strengths lead to faster alignment of the block copolymer, where the orientation kinetics obeys an exponential rate law. The observed rate of alignment increases with increasing dipolar interaction strength and is dependent on the initial state of the block copolymer. The primary mechanism of orientational ordering is found to be the redistribution of monomer segments leading to bridging and growth of the block copolymer domains around the nanoparticles.

  相似文献   


4.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


5.
Polysaccharides are abundant in nature, renewable, nontoxic, and intrinsically biodegradable. They possess a high level of functional groups including hydroxyl, amino, and carboxylic acid groups. These functional groups can be utilized for further modification of polysaccharides with small molecules, polymers, and crosslinkers; the modified polysaccharides have been used as effective building blocks in fabricating novel biomaterials for various biomedical applications such as drug delivery carriers, cell‐encapsulating biomaterials, and tissue engineering scaffolds. This review describes recent strategies to modify polysaccharides for the development of polysaccharide‐based biomaterials; typically self‐assembled micelles, crosslinked microgels/nanogels, three‐dimensional hydrogels, and fibrous meshes. In addition, the outlook is briefly discussed on the important aspects for the current and future development of polysaccharide‐based biomaterials, particularly tumor‐targeting intracellular drug delivery nanocarriers.

  相似文献   


6.
This communication describes the first application of cycloaddition between an in situ generated nitrile oxide with norbornene leading to a polymer crosslinking reaction for the preparation of poly(ethylene glycol) hydrogels under physiological conditions. Hydrogels with high water content and robust physical strength are readily formed within 2–5 min by a simple two‐solution mixing method which allows 3D encapsulation of neuronal cells. This bioorthogonal crosslinking reaction provides a simple yet highly effective method for preparation of hydrogels to be used in bioengineering.

  相似文献   


7.
Novel thermosensitive nanocomposite (NC) hydrogels consisting of organic/inorganic networks are prepared via in situ free radical polymerization of 2‐(2‐methoxyethoxy) ethyl methacrylate (MEO2MA) and oligo(ethylene glycol) methacrylate (OEGMA) in the presence of inorganic cross‐linker clay in aqueous solution. The obtained clay/P(MEO2MA‐co‐OEGMA) hydrogels exhibit double volume phase transition temperatures, an upper critical solution temperature (UCST), and a lower critical solution temperature (LCST), which can be controlled between 5 and 85 °C by varying the fraction of OEGMA units and the weight percentage of cross‐linker clay. These new types of NC hydrogels with excellent reversible thermosensitivity are promising for temperature‐sensitive applications such as smart optical switches.

  相似文献   


8.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


9.
The different mechanisms contributing to adhesion between two polymer surfaces are summarized and described in individual examples, which represent either seminal works in the field of adhesion science or novel approaches to achieve polymer–polymer adhesion. A further objective of this article is the development of new methodologies to achieve strong adhesion between low surface energy polymers.

  相似文献   


10.
The development of a straightforward method is reported to form hybrid polymer/gold planet–satellite nanostructures (PlSNs) with functional polymer. Polyacrylate type polymer with benzyl chloride in its backbone as a macromolecular tracer is synthesized to study its localization within PlSNs by analyzing the elemental distribution of chlorine. The functionalized nanohybrid structures are analyzed by scanning transmission electron microscopy, electron energy loss spectroscopy, and spectrum imaging. The results show that the RAFT (reversible addition–fragmentation chain transfer) polymers' sulfur containing end groups are colocalized at the gold cores, both within nanohybrids of simple core–shell morphology and within higher order PlSNs, providing microscopic evidence for the affinity of the RAFT group toward gold surfaces.

  相似文献   


11.
A simple and versatile method is developed for preparing anisotropic polymer particles by pressing polymer microspheres at elevated temperatures. Polystyrene (PS) microspheres are used to demonstrate this approach. Depending on the mechanical deformation and wetting of the polymers on the substrates, polymer structures with special shapes such as barrel‐like or dumbbell‐like shapes can be prepared. The morphology of polymer structures can be controlled by the experimental parameters such as the pressing pressure, the pressing temperature, and the pressing time. The wetting of the polymers on the substrates dominates when the samples are annealing at higher temperatures for longer times.

  相似文献   


12.
1,5,7‐Triazabicyclo[4.4.0]dec‐5‐ene (TBD)‐catalyzed polycondensation reactions of fatty acid derived dimethyl dicarbamates and diols are introduced as a versatile, non‐isocyanate route to renewable polyurethanes. The key step for the synthesis of dimethyl carbamate monomers from plant‐oil‐derived dicarboxylic acids is based on a sustainable base‐catalyzed Lossen rearrangement. The formed polyurethanes with molecular weights up to 25 kDa are characterized by SEC, DSC, and NMR analysis.

  相似文献   


13.
The present review focuses on the recent progress made in thin film orientation of semi‐conducting polymers with particular emphasis on methods using epitaxy and shear forces. The main results reported in this review deal with regioregular poly(3‐alkylthiophene)s and poly(dialkylfluorenes). Correlations existing between processing conditions, macromolecular parameters and the resulting structures formed in thin films are underlined. It is shown that epitaxial orientation of semi‐conducting polymers can generate a large palette of semi‐crystalline and nanostructured morphologies by a subtle choice of the orienting substrates and growth conditions.

  相似文献   


14.
Rewritable optical storage has been obtained in a spiropyran doped liquid crystal polymer films. Pictures can be recorded on films upon irradiation with UV light passing through a grayscale mask and they can be rapidly erased using visible light. Films present improved photosensitivity and optical contrast, good resistance to photofatigue, and high spatial resolution. These photochromic films work as a multifunctional, dynamic photosensitive material with a real‐time image recording feature.

  相似文献   


15.
The polymerization of ocimene has been first achieved by half‐sandwich rare‐earth metal dialkyl complexes in combination with activator and AliBu3. The regio‐ and stereoselectivity in the ocimene polymerization can be controlled by tuning the cyclopentadienyl ligand and the central metal of the complex. The chiral cyclopentadienyl‐ligated Sc complex 1 prepares syndiotactic cis‐1,4‐polyocimene (cis‐1,4‐selectivity up to 100%, rrrr = 100%), while the corresponding Lu, Y, and Dy complexes 2 – 4 and the achiral pentamethylcyclopentadienyl Sc, Lu, and Y complexes 5 – 7 afford isotactic trans‐1,2‐polyocimenes (trans‐1,2‐selectivity up to 100%, mm = 100%).

  相似文献   


16.
Hydrogels that can form spontaneously via covalent bond formation upon injection in vivo have recently attracted significant attention for their potential to address a variety of biomedical challenges. This review discusses the design rules for the effective engineering of such materials, and the major chemistries used to form injectable, in situ gelling hydrogels in the context of these design guidelines are outlined (with examples). Directions for future research in the area are addressed, noting the outstanding challenges associated with the use of this class of hydrogels in vivo.

  相似文献   


17.
Though great attention has been paid in constructing well‐defined nano‐structures via the self‐assembly of amphiphilic macromolecules, the self‐assembly of non‐amphiphilic macromolecules in nanodroplet has drawn less attention up to now. Recently, we prepared a temperature‐responsive PEG‐based branched polymer with disulfide bonds in its backbone via reversible addition–fragmentation chain transfer (RAFT) polymerization of 2‐(2‐methoxyethoxy) ethyl methacrylate, oligo(ethylene glycol) methacrylate, and N,N′‐cystamine bisacrylamide. Subsequently, we loaded the branched polymer into nanodroplets, and have found that the self‐assembly behaviors of this branched poly­mer in the nanodroplet are different from those in common solution. Bioreducible nanocapsules with tunable size can easily formed in nanodroplet even at high concentration.

  相似文献   


18.
The modulation of the cloud point of aqueous poly(N,N‐diethylacrylamide) solutions via the formation of supramolecular cyclodextrin complexes with hydrophobic end groups, namely adamantyl, tert‐butyl phenyl and azobenzene, synthesized via RAFT polymerization is described. The dependence of the apparent cloud points after cyclodextrin complexation is investigated with respect to the type and quantity of the guest end group, the polymer chain length and the cyclodextrin/end group ratio. Furthermore, the effect is reversed via the addition of guest molecules or via biocompatible enzymatic degradation of the cyclodextrins entire.

  相似文献   


19.
A facile and universal method is presented for the preparation of polymer brushes on amorphous TiO2 film. Homogeneous and stable poly(methyl methacrylate), polystyrene, poly(4‐vinylpyridine), and poly(N‐vinyl imidazole) (PNVI) brushes up to 550 nm are directly created onto TiO2 via UV‐induced photopolymerization of corresponding monomers. Kinetic studies reveal a linear increase in thickness with the polymerization time. Characterization of the resulting polymer brushes by FTIR spectroscopy, X‐ray photoelectron spectroscopy, contact angle, and atomic force microscopy (AFM) indicates an efficient UV‐grafting reaction. Finally, we have demonstrated the possibility in converting the PNVI brushes to poly(vinyl imidazolium bromide), i.e., poly(ionic liquid) brushes by polymer–analogous reactions.

  相似文献   


20.
A new molecular recognition motif between a water soluble pillar[10]arene ( WP10 ) and 1,10‐phenanthrolinium guest ( G ) in water is established. Mainly driven by the cooperativity of multiple electrostatic interactions, hydrophobic interactions, and π–π stacking interactions between WP10 and G , this host–guest complex exhibits a high association constant in water, which is about 17 times higher than that between WP10 and paraquat ( PQ ). Furthermore, this size selective host–guest complexation is employed to tune the lower critical solution temperature behavior of a random copolymer with PQ derivative pendants.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号