首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Raman spectroscopic measurements were carried out in the temperature range 10–300 K to understand the low‐temperature antiferroelectric (AFE)–ferroelectric (FE) phase transition in NaNbO3. Several modes in the low wavenumber range were found to disappear, while some new modes appeared across the transition. The temperature dependence of mode wavenumbers suggests that, during cooling, the AFE–FE phase transition begins to occur at 180 K, while the reverse transition starts at 260 K during heating. During cooling, the two phases were found to coexist in the temperature range of 220–160 K. Upon heating, the FE phase is retained up to 240 K and both FE and AFE phases coexist in the temperature range 240–300 K. In contrast to the earlier reports, the present results suggest a different coexistence region and the reverse transition temperature. The reported relaxor‐type FE behaviour over a broad temperature is consistent with the observed coexistence of phases during cooling and heating cycles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Polycrystalline BiFeO3 (BFO) thin films were successfully grown on Pt/Ti/SiO2/Si(100) and SrTiO3 (STO) (100) substrates using the chemical solution deposition (CSD) technique. X‐ray diffraction (XRD) patterns indicate the polycrystalline nature of the films with rhombohedrally distorted perovskite crystal structure. Differential thermal analysis (DTA) was performed on the sol–gel‐derived powder to countercheck the crystal structure, ferroelectric (FE) to paraelectric (PE) phase transition, and melting point of bismuth ferrite. We observed a significant exothermic peak at 840 °C in DTA graphs, which corresponds to an FE–PE phase transition. Raman spectroscopy studies were carried out on BFO thin films prepared on both the substrates over a wide range of temperature. The room‐temperature unpolarized Raman spectra of BFO thin films indicate the presence of 13 Raman active modes, of which five strong modes were in the low‐wavenumber region and eight weak Raman active modes above 250 cm−1. We observed slight shifts in the lower wavenumbers towards lower values with increase in temperature. The temperature‐dependent Raman spectra indicate a complete disappearance of all Raman active modes at 840 °C corresponding to the FE–PE phase transitions. There is no evidence of soft mode phonons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Pb(Fe2/3W1/3)O3 (PFW) thin films were deposited on platinized silicon substrate by a chemical solution deposition technique. Room‐temperature X‐ray diffraction (XRD) revealed a pure cubic crystal structure of the investigated material. The microstructure indicated good homogeneity and density of the thin films. A Raman spectroscopic study was carried out on PFW to study the polar nano‐regions in the temperature range 85–300 K. The Raman spectra showed a change in the peak intensity and a shift towards the lower wavenumber side with temperature. The Raman spectra also revealed the transition from the relaxor to the paraelectric state of PFW. There was no evidence of a soft mode in the low‐temperature region, in contrast to the normal ferroelectric behavior. The polar nano‐regions tend to grow and join at low temperatures (∼85 K), which become smaller with increase in temperature. The presence of strong Raman spectra in the cubic phase of the material is due to the presence of distributed Fm3m(Z = 2) symmetry nano‐ordered regions in the Pm3m(Z = 1) cubic phase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In this work we present a Raman scattering study of a specific region of the morphotropic phase boundary (MPB) of the [Pb(Mg1/3Nb2/3)O3]1−x (PbTiO3)x relaxor system. We performed low‐temperature measurement for the x = 0.4 composition in the 20–300 K temperature range, and a detailed analysis of Raman spectra of x = 0.4 and x = 0.37 compositions at 180 K. The analysis of Raman spectra indicates a structural phase transition at around 170 K for x = 0.4. The comparison of Raman data from x = 0.4 and x = 0.37 compositions suggests different phases for these samples at 180 K. These results are in accordance with the tetragonal to monoclinic structural phase transition observed in the PMN–PT MPB and contribute to improve the knowledge of the MPB of this solid solution. Additionally, we have performed the lattice dynamics phonon calculation of the (1 − x) PMN–xPT relaxor in order to best understand its complex Raman spectral properties. The normal mode analyses (at q ∼ 0) were performed by considering tetragonal symmetry for the (1 − x) PMN–xPT system and using the rigid ion model and mean field approximation. Our calculated wavenumber values are in good agreement with experimental and calculated results reported for PbTiO3 thus providing a reliable assignment of the various Raman modes. The low wavenumber modes are interpreted as arising from a lifting of the degeneracy of the vibrational modes related to Mg, Nb and Ti sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A. Anderson 《光谱学快报》2013,46(11):809-819
Raman spectra of powdered samples of tungsten trioxide have been obtained over the temperature range 80–300 K. No discontinuous or major changes in the spectra are observed, indicating that the transition at 233 K to the ferroelectric phase is inhibited for this form of sample, presumably because of perturbations to the long range electrostatic forces.  相似文献   

6.
In this work, we have performed Raman scattering measurements in Ba2BiSbO6 ceramics in the temperature range from 10 to 573 K. The Raman spectra were examined using group theory to analyze the decomposition of the reducible representation of the vibrational modes and with a virtual octahedral model. At room temperature, five modes were observed. At low temperatures, the spectra subtly showed the rhombohedral–monoclinic phase transition, which was identified by changes in the Raman intensity of the bending and symmetrical stretching SbO6 octahedral modes. The cubic–rhombohedral phase transition was not clearly evident in the high‐temperature Raman data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Raman spectra of 3CHBT in unoriented form were recorded at 14 different temperature measurements in the range 25–55 °C, which covers the crystal → nematic (N) phase transition, and the Raman signatures of the phase transition were identified. The wavenumber shifts and linewidth changes of Raman marker bands with varying temperature were determined. The assignments of important vibrational modes of 3CHBT were also made using the experimentally observed Raman and infrared spectra, calculated wavenumbers, and potential energy distribution. The DFT calculations using the B3LYP method employing 6‐31G functional were performed for geometry optimization and vibrational spectra of monomer and dimer of 3CHBT. The analysis of the vibrational bands, especially the variation of their peak position as a function of temperature in two different spectral regions, 1150–1275 cm−1 and 1950–2300 cm−1, is discussed in detail. Both the linewidth and peak position of the ( C H ) in‐plane bending and ν(NCS) modes, which give Raman signatures of the crystal → N phase transition, are discussed in detail. The molecular dynamics of this transition has also been discussed. We propose the co‐existence of two types of dimers, one in parallel and the other in antiparallel arrangement, while going to the nematic phase. The structure of the nematic phase in bulk has also been proposed in terms of these dimers. The red shift of the ν(NCS) band and blue shift of almost all other ring modes show increased intermolecular interaction between the aromatic rings and decreased intermolecular interaction between two  NCS groups in the nematic phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The low-frequency Raman scattering spectra of the DKDP ferroelectric crystal are studied in the temperature range 30–393 K. At temperatures above 150 K, the Raman spectra exhibit a central peak which reflects the lattice relaxation susceptibility. The width and integrated intensity of the central peak are derived from the experimental spectra. The critical slowing down of the relaxation response predicted by the Ginzburg-Landau-Devonshire theory is observed throughout the temperature range in which the central peak persists. Its integrated intensity does not, however, follow the predictions of the theory and reveals a strong temperature dependence in the ferroelectric phase and a weaker dependence in the paraphase. It is shown that the thermal activation law describes well the temperature dependence of the intensity of the central peak. An interpretation is proposed according to which the intensity of order parameter fluctuations is related to the activation barrier whose height is proportional to the deviation from the phase transition temperature.  相似文献   

9.
Dielectric and Raman scattering experiments were performed on polycrystalline Pb1-xCaxTiO3 thin films (x=0.10, 0.20, 0.30, and 0.40) as a function of temperature. The results showed no shift in the dielectric constant (K) maxima, a broadening with frequency, and a linear dependence of the transition temperature on increasing Ca2+ content. On the other hand, a diffuse-type phase transition was observed upon transforming from the cubic paraelectric to the tetragonal ferroelectric phase in all thin films. The temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the local cubic symmetry due to chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands in some temperature interval above the FE–PE phase transition temperature suggested a diffuse-type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. PACS 77.80.Bh; 77.55.+f; 78.30.-j; 77.80.-e; 68.55.-a  相似文献   

10.
We report on an accurate intensity calibration method for low wavenumber Raman spectroscopy. It uses the rotational Raman spectrum of N2. The intensity distributions in the rotational Raman spectra of diatomic molecules are theoretically well established. They can be used as primary intensity standards for intensity calibration. The intensity ratios of the Stokes and anti‐Stokes transitions originating from the same rotational levels are not affected by thermal population. Taking the effect of rotation–vibration interactions appropriately into account, we are able to calculate these intensity ratios theoretically. The comparison between the observed and calculated ratios of the N2 pure rotational spectrum provides an accurate relative sensitivity curve (error ~5 × 10−4) in the wavenumber region of −150 to 150 cm−1. We determine the temperature of water solely from the low wavenumber Raman spectra, using a thus calibrated spectrometer. The Raman temperature shows an excellent agreement with the thermocouple temperature, with only 0.5 K difference. The present calibration technique will be highly useful in many applications of low wavenumber quantitative Raman spectroscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Low temperature polarized Raman scattering measurements of KDP:Mn (0.9% weight of Mn) were performed at temperatures ranging from 14 to 300 K, over the spectral range 50–1250 cm−1. In the present results we can see that the spectra of undoped and doped samples at room temperature are very different. Doped samples maintain the KDP structure as tetragonal, with the same factor group D2d but with a different class of the space group, different from the original 12. The results show that the crystal undergoes a phase transition at temperature between 115 and 97 K, which is much lower than the phase transition temperature of undoped KDP that occurs at 122 K, where the crystal changes from the para‐electric to the ferroelectric phase. Further, at very low temperature (14 K) we can see that the spectra of KDP:Mn (0.9% weight of Mn) present a behavior very different from the behavior presented by the spectra of KDP doped with low Mn concentration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The dielectric spectra of ferroelectric hydrogen bonded betaine phosphate0.05 betaine phosphite0.95 (DBP0.05DBPI0.95) was investigated in the very wide temperature (300–20 K) and frequency (20–35 GHz) regions. The dielectric dispersion was analyzed in terms of distribution of relaxation times, using Tichonov regularization method. Strongly asymmetric and broad distribution of relaxation times below ferroelectric phase transition temperature T c?≈?253 K clearly differs from the one that is usually observed in ferroelectrics. The observed disorder in deuterons system close to ferroelectric phase transition temperature is an embryo of coexistence ferroelectric order and dipolar glass disorder observed at low temperatures.  相似文献   

13.
Abstract

We have measured the Raman spectra of the quasi-one-dimensional crystal SbSBr as a function of pressure at 295, 70, 37 and 25 K.

The pressure coefficients of the observed Raman modes have been determined and used to distinguish inter-from intrachain modes. Spectral features characteristic of the ferroelectric phase have been attributed to impurities or lattice imperfections and not to the presence of the ferroelectric phase, providing indication that the para-to ferroelectric phase transition occurs below 25 K.  相似文献   

14.
We report on the infrared (IR) and Raman studies of the three isostructural quasi‐one‐dimensional cation radical salts of 3,4‐dimethyl‐tetrathiafulvalene (o‐DMTTF)2X (X = Cl, Br, and I), which all exhibit metallic properties at room temperature and undergo transitions to a semiconducting state in two steps: a soft metal‐to‐semiconductor regime change in the temperature region Tρ = 5–200 K and then a sharp phase transition at about TMI = 50 K. Polarized IR reflectance spectra (700–16 000 cm−1) and Raman spectra (50–3500 cm−1, excitation λ = 632.8 nm) of single crystals were measured as a function of temperature (T = 5–300 K) to assess the eventual formation of a charge‐ordered state below 50 K. Additionally, the temperature dependence of the IR absorption spectra of powdered crystals in KBr discs was also studied. The Raman spectra and especially the bands related to the CC stretching vibration of o‐DMTTF provide unambiguous evidence of uniform charge distribution on o‐DMTTF down to the lowest temperatures, without any modification below 50 K. However, the temperature dependence of Raman spectra indicates a regime change below about 200 K. Temperature dependence of both electronic dispersion and vibrational features observed in the IR spectra also clearly confirms the regime change below about 200 K and shows the involvement of C H···X hydrogen bonds in the electronic localization; some spectral changes can be also related with the phase transition at 50 K. Additionally, using density functional theory methods, the normal vibrational modes of the neutral o‐DMTTF0 and cationic o‐DMTTF+ species, as well as their theoretical IR and Raman spectra, were calculated. The theoretical data were compared with the experimental IR and Raman spectra of neutral o‐DMTTF molecule. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We have performed dielectric and micro-Raman spectroscopy measurements in the 298–673 K temperature range in polycrystalline Pb0.50Sr0.50TiO3 thin films prepared by a soft chemical method. The phase transition have been investigated by dielectric measurements at various frequencies during the heating cycle. It was found that the temperature corresponding to the peak value of the dielectric constant is frequency-independent, indicating a non-relaxor ferroelectric behavior. However, the dielectric constant versus temperature curves associated with the ferroelectric to paraelectric phase transition showed a broad maximum peak at around 433 K. The observed behavior is explained in terms of a diffuse phase transition. The obtained Raman spectra indicate the presence of a local symmetry disorder, due to a higher strontium concentration in the host lattice. The monitoring of some modes, conducted in the Pb0.50Sr0.50TiO3 thin films, showed that the ferroelectric tetragonal phase undergoes a transition to the paraelectric cubic phase at around 423 K. However, the Raman activity did not disappear, as would be expected from a transition to the cubic paraelectric phase. The strong Raman spectrum observed for this cubic phase is indicative that a diffuse-type phase transition is taking place. This behavior is attributed to distortions of the perovskite structure, allowing the persistence of low-symmetry phase features in cubic phase high above the transition temperature. This result is in contrast to the forbidden first-order Raman spectrum, which would be expected from a cubic paraelectric phase, such as the one observed at high temperature in pure PbTiO3 perovskite. PACS 78.30.-j; 77.80.Bh; 64.70.Kb; 68.55.-a; 77.22.-a; 77.55.+f  相似文献   

16.
A novel selective synthesis of the unsymmetrically substituted tetrathiafulvalene dimethyltrimethylene‐tetrathiafulvalene (DMtTTF) is described together with its electrocrystallization to the known conducting mixed‐valence ClO4 and ReO4 salts. Infrared (IR) and Raman spectra of the two isostructural quasi‐one‐dimensional cation radical salts (DMtTTF)2X (X = ReO4, ClO4) are investigated as a function of temperature (T = 5–300 K). At ambient temperature, these salts show metallic‐like properties and below Tρ = 100–150 K, they undergo a smeared transition to semiconducting state. To study this charge localization, we measured temperature dependence of polarized IR reflectance spectra (700–16 000 cm–1) and Raman spectra (150–3500 cm–1, excitation λ = 632.8 nm) of single crystals. For both compounds, the Raman data and especially the bands related to the C=C stretching vibration of the DMtTTF molecule show that the charge distribution on molecules is uniform down to the lowest temperatures. Similarly, IR data confirm that down to the lowest temperatures, there is neither charge ordering nor important modification of the electronic structure. However, the temperature dependence of Raman spectra of both salts reveals a regime change at about 150 K. Additionally, using Density Functional Theory (DFT) methods, the normal vibrational modes of the neutral DMtTTF0 and cationic DMtTTF+ species and also their theoretical IR and Raman spectra were calculated. The theoretical data were compared with the experimental IR and Raman spectra of neutral DMtTTF0 molecule. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Raman spectra of DL ‐Alanine crystals were investigated in the 50–3200 cm−1 spectral region for temperatures ranging from 15 to 295 K. The crystalline structure of DL ‐Alanine represents a rare example of an amino acid racemate crystallizing in a non‐centrosymmetric space group. From this study, we have observed changes in the wavenumber of modes associated with both rocking of CO2 and skeletal vibrations. On the other hand, neither changes in the modes associated to CH or CH3 vibrations nor substantial modifications of the lattice modes of the crystal were observed. Such result indicates slight changes of the CO2 group orientation without observation of a solid–solid phase transition in the DL ‐Alanine crystal. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We have analysed the Raman spectra of C60 single crystals between room temperature and 10K and studied the temperature-induced phase transition in this material. The spectra show crystal field splitting of the internal Raman modes but no evidence for a line shift near the phase transition. The photo-induced transformation of the crystals and its implication on the interpretation of the Raman spectra is discussed. In the low temperature phase we observed two lines at 30 cm–1 and 41 cm–1 which we assign to the librational modes of the crystal.  相似文献   

19.
Among the family of rare earth (RE) dopants, the doping of first member Ce into GaN is the least studied system. This article reports structure properties of Ce‐doped GaN realized by technique of ion implantation. Ce ions were implanted into metal organic chemical vapor deposition grown n‐ and p‐GaN/sapphire thin films at doses 3 × 1014 and 2 × 1015 cm−2. X‐ray diffraction scans and Raman scattering measurements exhibited expansion of lattice in the implanted portion of the samples. First order Raman scattering spectra show appearance of several disorder‐activated Raman scattering modes in addition to typical GaN features. A dose‐dependent decrease in intensity of E2 mode was observed in Raman the spectra of the implanted samples. Ultraviolet Raman spectra of implanted samples show complete quenching of photoluminescence emission and appearance of multiple A1(LO) phonon scattering modes up to fifth order. Moreover, a decrease in intensity and an increase in line width of LO modes as a function of wavenumber were observed for implanted samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
We have studied the lattice vibrational modes of Zr‐substituted Bi4Ti3O12 ceramics using micro‐Raman spectroscopy. Replacement of Zr at the Ti site in the perovskite block is found from the increase in the lattice parameters as a function of Zr contents. Combined X‐ray diffraction patterns and Raman analysis suggested less than 40 mole% Zr solubility in Bi4Ti3O12. At 40 mole% of Zr substitution or above, the unreacted monoclinic‐phase ZrO2 is observed in the X‐ray diffraction patterns and the Raman spectra. The incorporation of Zr in Bi4Ti3O12 reduces the soft mode wavenumber and the transition temperature. Moreover, temperature dependent studies confirmed the ferroelectric to paraelectric transition in Bi4Ti3O12 at about 675 °C. On increasing the Zr content up to 40% on the Ti sites of Bi4Ti3O12, a systematic decrease in the phase transition temperature from 675 to 630 °C was observed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号