首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Thin films of Bi2Sr2CaCu2O8 and (Bi, Pb)2Sr2Ca2Cu3O10 have been prepared on monocrystalline (100) MgO substrates, using a laser ablation method with post annealing treatment. The influence of substrate temperature and oxygen pressure during deposition were investigated. SEM observations, EDS analysis, electric and magnetic measurements have been used to characterize the films. Superconducting “2212” films, with Tc(R = 0) at 80–83 K and Jc (50 K) up to 5 × 105 A/cm2, have been currently achieved, while Pb-doped “2223” films exhibit Tc as high as 110 K with Jc = 5 × 104 A/cm2 at 77 K. The effect of annealing at low temperature (350°C) in an argon flow has been studied for the 2212 phase, it shows the influence of the oxygen non-stoichiometry, i.e. of the hole carrier density upon Tc's which can be measured up to 89 K (zero resistance).  相似文献   

2.
The phase evolution during melting and recrystallization of (Bi,Pb)2Sr2Ca2Cu3O10 ((Bi,Pb)-2223) core in a Ag-sheathed monofilamentary tape has been investigated. The tape was fabricated by PIT process with powders containing nearly pure (Bi,Pb)-2223 phase. Short samples were melted at 805 °C, 808 °C, 812 °C, 816 °C, 831 °C, slowly cooled at 1.5 °C/h under flowing 1.6% O2 balanced with argon and quenched in air at room temperature. X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) were applied for the phase identification. The results show that (Bi,Pb)-2223 core is partially melted into a liquid and alkaline earth cuprates (AECs), mainly 2:1-AEC, at 805 °C, 808 °C, 812 °C, and well reforms directly from the melt during the slow cooling. More (Bi,Pb)-2223 phase is decomposed at temperatures higher than 816 °C, but cannot recrystallize, indicating that a partial melting at some temperatures around a given temperature range is essential to (Bi,Pb)-2223 phase reformation. The melt composition moves from that between “2223” and “2212” stoichiometries towards 2212-like stoichiometry with increasing temperature. This seems to lead to the conclusion that (Bi,Pb)-2223 phase decomposes incongruently into a 2212-like liquid and (Ca,Sr)-cuprates. 2:1-AEC plays the most important role in (Bi,Pb)-2223 melt-recrystallization process. Our results also reveal that plate-like shape (Bi,Pb)-2223 grains can be obtained via melting and recrystallization if the optimum processing conditions are used.  相似文献   

3.
YBa2Cu3O7−δ (YBCO) films with high critical current density (Jc) were successfully fabricated on nickel tapes buffered with epitaxial NiO. NiO was prepared on the textured nickel tape by the surface-oxidation epitaxy (SOE) method. We have reported so far a critical temperature (Tc) of 87 K and Jc=4–6×104 A/cm2 (77 K, 0 T) for the YBCO films on NiO/Ni tapes. To enhance the superconducting properties of the YBCO films on the SOE-grown NiO, depositions of thin oxide cap layers such as YSZ, CeO2, and MgO on NiO were investigated. These oxide cap layers were epitaxially grown on NiO and provided the template for the epitaxial growth of YBCO films. Substantially improved data of Tc=88 K and Jc=3×105 A/cm2 (77 K, 0 T) and 1×104 A/cm2 (77 K, Hc, 4 T) were obtained for YBCO film on NiO, by using a MgO cap layer with a thickness of 50 nm. The method described in this paper is a simple way to produce long YBCO tape conductors with high-Jc values.  相似文献   

4.
Silver-sheathed (Bi,Pb)2Sr2Ca2Cu3Ox (Bi(2223)) tapes were fabricated by the “oxide-powder-in-tube” technique. After the tapes were shaped and sintered, an additional cold rolling and a re-sintering were applied in order to enhance the critical current density Jc. The influence of the additional rolling conditions (roll diameter, number of passes, lubrication) on the Jc (77 K, 0 T) was made clear. The influence of the sintering conditions (temperature, heating rate) on Jc was also investigated. As for the rolling conditions, a small redundant shear deformation or a small contact angle leads to a good grain alignment, texturing, and a higher Jc value. As for the temperature of the first sintering, 1113 K is superior to 1118 K because of the volume fraction of the Bi(2223) phase.  相似文献   

5.
We measured the AC transport current loss of Bi 2223 multifilament Ag-sheathed tape under DC external magnetic field of 0–0.2 T. There were discrepancies between the measured data and Norris' formula for elliptical model in the range of low value of Ip/Ic (Ip and Ic are peak of the AC transport current and critical current of the tape respectively), while without DC background field, the loss of the tape was close to Norris' formula. Theoretically speaking, even with the DC background field and decreased critical current the AC transport current loss of the tape follows Norris' formula which is derived from the Bean model. When DC background field is applied to the HTS tape, n value of the power law EJ characteristics decreases together with the decrease of Jc. Dependence of the AC transport current loss on the n value was analyzed by numerical calculation. The results show that the loss depends on the n value and that decrease of the n value is one of the causes of the discrepancies between the measured data and Norris' formula.  相似文献   

6.
High-Tc superconducting thin films have been deposited in situ by means of a plasma assisted metal-organic chemical vapour deposition (PAMOCVD) process on LaAlO3. An EMCORE high-speed rotating disc reactor was used to deposit the films at a substrate temperature of 600°C to 800°C. The system is equipped with a (remote) 120 W microwave plasma generator. The oxidising plasma gas is N2O and/or O2 while Ar was used as the inert carrier gas for the different metal-organics. The influence of different process parameters (such as the temperatures of the metal-organics, substrate temperature, and plasma gas composition) on the superconductive properties and on the morphology of the films was investigated. Surface morphology and composition were studied by SEM/EDX or EPMA, and AC susceptibility measurements were used to investigate the superconductive properties (Tc and Jc). X-ray diffraction measurements indicated that single-phase YBa2Cu3O7−x films were epitaxially grown with the 00l orientation perpendicular to the substrate surface. The critical temperature (Tc) of the films is about 90 K and the critical current density (Jc) is higher than 106 A/cm2 at 77 K and zero field.  相似文献   

7.
We report on the fabrication and characteristics of sandwich-type tunnel junctions with highly crystalline sputtered a-axis oriented thin film of Y1Ba2Cu3O7-x (YBC) as the base and the counter electrode. The junctions have been fabricated on SrTiO3 (100) and MgO (100) substrates. A non-superconducting phase of YBC corresponding to a lattice constant of 4.08 Å is used as the barrier layer making this an all YBC sandwich junction. For all temperatures below Tce (R=0) of the device, a zero voltage current was observed. The critical current density (Jc) of the device was found to be dependent on the thickness of the barrier layer and the crystallinity of the a-axis oriented YBC electrodes. At 40 K, such a junction fabricated on a SrTiO3 (100) substrate was found to have a Jc of 1.8 X 104 A/cm2 and an IcRn product of 0.2 mV.  相似文献   

8.
The influence of the sintering conditions on the microstructure and critical current density Jc has been studied on screen-printed Ag-(Bi, Pb)2Sr2Ca2Cu3Ox tapes with a ceramics mono-layer core. Three kinds of fabrication processes, which consist of a combination of cold working (rolling and/or pressing) and sintering, are applied. Four times repetition of pressing and sintering after the pre-sintering produces the highest c-axis alignment and achieves Jc= 1.5 × 104 A/cm2 (77 K, 0 T). The Jc versus θ data with an angle θ between B and the c-axis elucidate the relation between the anisotropy ratio γ=Jc(Bc)/Jc(B|c and the half-height angular width Δθ of a peak for Bc. This is related to both grain alignment and the Jc value. An increase in Jc, which comes from an improvement for grain alignment, enhances γ and narrows Δθ. The Jc versus θ data are fitted to the expression Jc(B, θ)=J c(B, 90°)/[(γ−1)|cos θ|n+1] by regarding both γ and n as adjustable parameters. Fabrication of screen-printed tapes with multilayers (1≤N≤5) is presented, where the critical current increases from 8.0 A to 30.2 A at 77 K and 0 T as N increases.  相似文献   

9.
Transport AC losses measured in self-field conditions on multifilamentary Bi-2223 tapes are often found to be lower than those calculated within the framework of the critical state model for a bulk wire with elliptical cross section, though generally higher than predicted for a strip. This effect is sometimes ascribed to the non-ideal geometry of the tapes, which does not exactly reproduce either shape. Here we propose an alternative explanation assuming that the critical current density of superconducting material depends on magnetic field. In practice, we analyzed the AC loss curve and deduced different Ic values for the individual data points, using the standard Norris equation for elliptical conductor. This gives the relation between ‘calculated' Ic and the self-field associated to AC transport current, which can be regarded as an alternative way to qualify the dependence of Jc on magnetic field. Important is that this procedure covers the range of fields below the self-field at Ic where the measurement in background DC field can not be used to determine Jc(B).  相似文献   

10.
High-transport critical current density (Jc-oxide)>500 kA/cm2 at 4.2 K, 10 T can be obtained for Bi-2212/Ag tapes fabricated by using pre-annealing and intermediate rolling (PAIR) and melt-solidification process. In this paper, we report high-temperature properties of PAIR-processed Bi-2212/Ag multilayer tape in order to show their potential for practical applications operated at cryocooling temperatures. Magnetic field dependence and angular dependence of critical current (Ic) are investigated at temperatures ranging 10–50 K by using helium gas cooling and liquid neon. Field-temperature curves for Ic=0.2 and 2.0 A are also determined in order to show the approximation of the irreversible field. High-temperature performance of the tape is attractive to consider future applications. For example, the best sample carries Ic=267 A (engineering-Jc=303 A/mm2, Jc-oxide=151 kA/cm2) and 92 A (104 A/mm2, 52 kA/cm2) at 27.1 K (in liquid neon), in magnetic fields (parallel to the tape surface) of 2 and 10 T, respectively. Engineering-Jc of 100 A/mm2 is obtained even in the perpendicular field of 0.5 T at 27.1 K.  相似文献   

11.
Smooth, epitaxial cerium dioxide thin films have been grown in-situ in the 450–650°C temperature range on (001) yttria-stabilized zirconia (YSZ) substrates by metal–organic chemical vapor deposition (MOCVD) using a new fluorine-free liquid Ce precursor. As assessed by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution electron microscopy (HREM), the epitaxial films exhibit a columnar microstructure with atomically abrupt film-substrate interfaces and with only minor bending of the crystal plane parallel to the substrate surface near the interface and at the column boundaries. With fixed precursor temperature and gas flow rate, the CeO2 growth rate decreases from 10 Å/min at 450°C to 6.5 Å/min at 540°C. The root-mean-square roughness of the films also decreases from 15.5 Å at 450°C to 4.3 Å at 540°C. High-quality, epitaxial YBa2C3O7−x films have been successfully deposited on these MOCVD-derived CeO2 films grown at temperatures as low as 540°C. They exhibit Tc=86.5 K and Jc=1.08×106 A/cm2 at 77.4 K.  相似文献   

12.
The dependence of transport Jc value on the traveling rate and the nominal composition was investigated by taking different nominal compositions of YBa2Cu3O6+x (Y123) + n mol% Y2BaCuO5 (Y211) (n = 10, 20, 30, 40 and 50) with addition of 0.5 wt% of Pt on samples processed by different unidirectional solidification rates, namely 1, 3 and 5 mm/h. The highest Jc was found in the sample with 30% Y211 addition by the higher traveling rate adjusted to prevent the formation of polycrystals. In this φ 1.56 × 60 mm sample the values of transport Ic and Jc were 1370 A and 71 700 A/cm2, respectively, which were obtained by the conventional DC four-probe method with criterion of 1 μV/cm at 77 K and self-field.  相似文献   

13.
A new method using a combination of cold isostatic pressing (CIP) and hot-pressing (HP) was applied to fabricate Bi-2223 bar current leads. The critical current density (Jc) achieved by this method reached as high as 1000 A/cm2 at 77 K and self-generated magnetic field. This value of Jc presented here is much higher than the best Jc reported for rod current leads which is 570 A/cm2 achieved by CIP technique [Y. Yamada, Bi-based bulk current leads and their applications, in: H. Meada, K. Togano (Eds.), Bismuth-based High-temperature Superconductors, 1996, p. 277.]. The phases and microstructures were analysed by XRD and SEM. The texture and weak link were studied by pole figures and AC susceptibility, respectively. The results show that the grain connectivity, matrix density and texture of the samples were improved significantly by this method.  相似文献   

14.
Lijun Ni 《中国物理 B》2022,31(12):128504-128504
We report the temperature dependence of the spin pumping effect for Y3Fe5O12 (YIG, 0.9 μm)/NiO (tNiO)/W (6 nm) (tNiO = 0 nm, 1 nm, 2 nm, and 10 nm) heterostructures. All samples exhibit a strong temperature-dependent inverse spin Hall effect (ISHE) signal Ic and sensitivity to the NiO layer thickness. We observe a dramatic decrease of Ic with inserting thin NiO layer between YIG and W layers indicating that the inserting of NiO layer significantly suppresses the spin transport from YIG to W. In contrast to the noticeable enhancement in YIG/NiO (tNiO ≈ 1-2 nm)/Pt, the suppression of spin transport may be closely related to the specific interface-dependent spin scattering, spin memory loss, and spin conductance at the NiO/W interface. Besides, the Ic of YIG/NiO/W exhibits a maximum near the TN of the AF NiO layer because the spins are transported dominantly by incoherent thermal magnons.  相似文献   

15.
We report on IV characteristics for in situ formed Nb/Au/(1 1 0)YBa2Cu3O7−δ (YBCO) Josephson junction, where the homoepitaxial (1 1 0)YBCO film shows ultra-smooth surface morphology. The field dependence of critical supercurrent Ic shows anisotropic large junction behavior with normal Fraunhofer patterns expected from BCS model of dx2y2 wave superconductors. This strongly suggests that the Nb/Au/(1 1 0)YBCO junctions cannot be regarded as atomic scaled corner junctions, in contrast with (0 0 1)/(1 1 0)YBCO grain boundary junctions to show “π-junction” with a pronounced dip near zero fields in field modulation of Ic.  相似文献   

16.
陈艺灵  张辰  何法  王达  王越  冯庆荣 《物理学报》2013,62(19):197401-197401
通过混合物理化学气相沉积法 (hybrid physical-chemical vapor deposition, HPCVD), 在(000l) SiC 衬底上制得一系列从10 nm到8 μm的MgB2超导膜样品, 并对它们的形貌、超导转变温度Tc 和临界电流密度Jc与膜厚度的关系进行了研究. 观察到Tc随膜厚度增加上升到最大值后, 尽管膜继续增厚, 但Tc值保持近乎平稳, 而Jc则先随膜厚度增加上升到最高值后, 继而则随膜的厚度的增加而下降. MgB2膜的Tc(0)和Tc(onset)值与膜厚的关系基本一致, Tc(0)在膜厚为230 nm处达到最大值Tc(0)=41.4 K, 而Jc(5K,0T)在膜厚为100 nm时达到最大值, Jc (5 K, 0 T)=2.3×108A·cm-2, 这也说明了我们能用HPCVD方法制备出高质量干净MgB2超导膜. 本文研究的超导膜厚度变化跨度非常大, 从10 nm级的超薄膜到100 nm级的薄膜, 再到几微米的厚膜, 如此TcJc对膜厚度变化的依赖就有了较完整、成体系的研究. 并且本文的工作对MgB2超导薄膜制备的厚度选取具有实际应用意义. 关键词: 2超导膜')" href="#">MgB2超导膜 混合物理化学气相沉积法 厚度 临界电流密度  相似文献   

17.
潘杰云  张辰  何法  冯庆荣 《物理学报》2013,62(12):127401-127401
利用混合物理化学气相沉积法(HPCVD)在MgO(111)衬底上制备了干净的MgB2超导超薄膜. 在背景气体压强, 载气氢气流量以及沉积时间一定的情况下, 改变B2H6的流量, 制备得到不同厚度系列的MgB2超导薄膜样品, 并测量了其超导转变温度 Tc, 临界电流密度Jc等临界参量. 该系列超导薄膜沿c轴外延生长, 表面具有良好的连接性, 且有很高的超导转变温度Tc(0) ≈ 35-38 K和很小的剩余电阻率ρ(42 K) ≈ 1.8-20.3 μΩ·cm-1. 随着膜厚的减小而减小, 临界温度变低, 而剩余电阻率变大. 其中20 nm的样品在零磁场, 5K时的临界电流密度Jc ≈ 2.3×107 A/cm2. 表明了利用HPCVD在MgO(111)衬底上制备的MgB2超薄膜有很好的性能, 预示了其在超导电子器件中广阔的应用前景. 关键词: MgO(111)衬底 2超薄膜')" href="#">MgB2超薄膜 混合物理化学气相沉积  相似文献   

18.
Bi-2223 Ag---Cu alloy sheathed tapes doped with Ti, Zr or Hf were fabricated by a powder-in-tube technique using intermediate uniaxial presses and variations in total sintering times. Increasing Cu compositions in the Ag---Cu alloy sheath doped with certain elements into the sheath, combined with appropriate total sintering times were found to lead good superconducting properties. Furthermore, the best total sintering time varied according to the amount of Cu in the Ag---Cu alloy sheath and the existence of doping elements. A transport critical current density, Jc, of 4.1 × 104 A/cm2 at 4.2 K, 14 T and 2.2 × 104 A/cm2 at 77 K, 0 T was achieved in Ag-10 at% Cu-0.1 at% Hf sheathed Bi-2223 tapes sintered for total 200 h.  相似文献   

19.
The effects of Yb addition on the phase evolution and superconducting properties of (Bi,Pb)-2212 superconductor prepared by solid state synthesis in the polycrystalline form were studied. Yb content of the samples was varied (x = 0–0.5) on a general stoichiometry of Bi1.7Pb0.4Sr2.0Ca1.1Cu2.1YbxOy. Phase analysis by XRD, microstructural examination by SEM, measurements of density and superconducting properties were done to evaluate the relative performance of the samples. A Yb containing secondary phase could be distinguished from XRD analysis from Yb > 0.3 in the stoichiometric level. Microstructural examination showed clear and distinct morphological variation with Yb stoichiometry and a secondary phase with round edged grains was observed in the microstructure of Yb added samples. The critical current density (JC) and superconducting transition temperature (TC) of all the Yb added samples were found to be higher than that of the pure sample. A maximum TC-onset of 94.5 K and a maximum JC 688 A/cm2 has been observed for the sample with Yb = 0.2 in the stoichiometric level. Above this level TC and JC began to reduce, may be due to secondary phase formation.  相似文献   

20.
The recently reported superconducting YBa2Cu3Oy (Y123) foams are highly interesting and promising for variety of applications. In this report we present first magneto-transport measurements of the superconducting properties of these foams. The investigations reveal the superconducting properties being similar to those of bulk melt processed materials. The 123 foams reveal a Tc of 92 K and have a magnetization Jc of 40,000 A/cm2 at 77 K and 0 T. The measurements of magnetic hysteresis versus field show a high anisotropy of the critical current density up to Jcab/Jcc7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号