首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic properties of magnetophotonic crystals based on opal matrices have been studied as well as their electromagnetic properties in millimeter waveband. The particles of cobalt oxide are embedded into the inter-sphere voids of the matrix. After annealing in hydrogen the cobalt oxide particles transform to metallic cobalt. It has been shown that if antiferromagnetic cobalt oxide remains besides ferromagnetic cobalt, the low-temperature magnetic hysteresis loop is shifted along the field axis. Magnetic field influences essentially on the microwave transmission and reflection coefficients only after annealing in hydrogen that is if the ferromagnetic phase presents in the sample. The spectra of magnetic resonance and antiresonance are studied.  相似文献   

2.
The magnetic and magneto-optical properties of ion-synthesized cobalt nanoparticles in the amorphous silicon oxide matrix are investigated as a function of the implantation dose. The analysis of the field dependences of the magnetization and the magneto-optical Faraday and Kerr effects demonstrates that, as the ion implantation dose increases, the superparamagnetic behavior of an ensemble of cobalt nanoparticles at room temperature gives way to a ferromagnetic response with the anisotropy characteristic of a thin magnetic film. The magnetization curves for the superparamagnetic and ferromagnetic ensembles of cobalt nanoparticles are simulated to determine their average sizes and the filling density in the irradiated layer of the silicon dioxide matrix. It is revealed that the spectral dependences of the Faraday and Kerr effects for ion-synthesized cobalt nanoparticles differ substantially from those for continuous cobalt films due to the localized excitations of free electrons in the nanoparticles.  相似文献   

3.
Ferromagnetic nanoclusters are very useful for a magnetic recording. However, application of ferromagnetic nanoclusters is limited due to air-oxidation. One way to solve air-oxidation is to encapsulate ferromagnetic nanoclusters with inert materials such as carbon when they are produced. This allows us to keep excellent magnetic properties for a long time. In this work, we report a very simple synthetic method of fullerene (i.e., onions and nanotubes) encapsulated ferromagnetic nickel and cobalt nanoclusters by thermally decomposing metallocene vapors with a resistive heater. Protection from air-oxidation was tested by annealing encapsulated ferromagnetic nanoclusters in air up to ∼180°C for half a day and then, recording XRD patterns. No oxide peaks were observed in the XRD patterns, indicating that oxidation protection via fullerene encapsulation is very good. Magnetic property measurement showed that both fullerene encapsulated nickel and cobalt nanoclusters possessed excellent magnetic properties.  相似文献   

4.
Physics of the Solid State - Dielectric properties of the nanostructured multiferroic composite on the basis of silicate porous glass simultaneously filled with ferromagnetic (cobalt oxide CoO) and...  相似文献   

5.
Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 °C, while post-deposition annealing at 400 °C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.  相似文献   

6.
The trend in reducing device dimension induces new physical properties and requires the development of measurement tools at the nanometer scale. This paper deals with the relation between magnetism and structure of thin films. We have chosen cobalt as a ferromagnetic layer and chromium as a bcc buffer. Magnetic and structural investigations have been led on epitaxial Co/Cr layers grown on MgO (001) substrates. The thickness of the cobalt layer varies from 0.75 to 20 nm. Investigations on the cobalt layer by EXAFS and HRTEM give evidence for a bcc or a hcp structure depending on the cobalt thickness. Magnetic measurements using SQUID indicate that the saturation magnetisation per volume unit is constant for the layers. EELS experiments have been carried out to measure any evolution in the I(L3)/I(L2) ratio for ferromagnetic layers of different thickness. We discuss the influence of structural and magnetic contributions on the evolution of the ratio with the cobalt thickness.  相似文献   

7.
Uniform and adherent cobalt oxide thin films have been deposited on glass substrates from aqueous cobalt chloride solution, using the solution spray pyrolysis technique. Their structural, optical and electrical properties were investigated by means of X-ray diffraction (XRD), scanning electron micrograph (SEM), optical absorption and electrical resistivity measurements. Along with this, to propose Co3O4 for possible application in energy storage devices, its electrochemical supercapacitor properties have been studied in aqueous KOH electrolyte. The structural analysis from XRD pattern showed the oriented growth of Co3O4 of cubic structure. The surface morphological studies from scanning electron micrographs revealed the nanocrystalline grains alongwith some overgrown clusters of cobalt oxide. The optical studies showed direct and indirect band gaps of 2.10 and 1.60 eV, respectively. The electrical resistivity measurement of cobalt oxide films depicted a semiconducting behavior with the room temperature electrical resistivity of the order of 1.5 × 103 Ω cm. The supercapacitor properties depicted that spray-deposited Co3O4 film is capable of exhibiting specific capacitance of 74 F/g.  相似文献   

8.
The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram.  相似文献   

9.
Cobalt nanoparticles coated with zinc oxide can form composite spheres with core-shell structure. This coating process was based on the use of silane coupling with agent 3-mercaptopropyltrimethoxysilane (HS-(CH2)3Si(OCH3)3, MPTS) as a primer to render the cobalt surface vitreophilic, thus it renders cobalt surface compatible with ZnO. X-ray photoelectron spectroscopy (XPS) was used to gain insight into the way in which the MPTS is bound to the surface of the cobalt nanoparticles. The morphological structure, chemical composition, optical properties and magnetic properties of the product were investigated by using transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL) spectroscope and vibrating sample magnetometer (VSM). It was found that the Co/ZnO core-shell structure nanocomposites exhibited both of favorable magnetism and photoluminescence properties. Results of the thermogravimetric analysis (TGA) and differential thermal analysis (DTA) indicated that the thermal stability of cobalt/zinc oxide was better than that of pure cobalt nanoparticles.  相似文献   

10.
11.
Polymeric matrices with stabilized metallic nanoparticles constitute an important class of nanostructured materials, because polymer technology allows fabrication of components with various electronic, magnetic and mechanical properties. The porous cellulose matrix has been shown to be a useful support material for platinum, palladium, silver, copper and nickel nanoparticles. In the present study, nanosized cobalt particles with enhanced magnetic properties were made by chemical reduction within a microcrystalline cellulose (MCC) matrix. Two different chemical reducers, NaBH4 and NaH2PO2, were used, and the so-formed nanoparticles were characterized with X-ray absorption spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. These experimental techniques were used to gain insight into the effect of different synthesis routes on structural properties of the nanoparticles. Magnetic properties of the nanoparticles were studied using a vibrating sample magnetometer. Particles made via the NaBH4 reduction were amorphous Co-B or Co oxide composites with diminished ferromagnetic behaviour and particles made via the NaH2PO2 reduction were well-ordered ferromagnetic hcp cobalt nanocrystals.  相似文献   

12.
A simple process for fabricating submicrometric magnetic arrays employing interference lithography, sputtering deposition and lift-off processes is proposed and demonstrated. The magnetic properties of cobalt (Co) arrays were measured and compared with those of a continuous Co magnetic film. The results show a dependence of the hysteresis curve on the orientation of the field as regards the array, which is correlated with the anisotropy of the structures and a dependence of the coercive field on the periodicity of the arrays. Moreover, an exchange bias effect was observed, which is ascribed to a ferromagnetic/antiferromagnetic (FM/AFM) coupling between Co and a thin surface cobalt oxide (CoO) layer.  相似文献   

13.
The structural and magneto-optical properties of “porous silicon-cobalt” nanocomposites prepared through electrochemical deposition on silicon substrates of different porosities are investigated. It is revealed that, under galvanostatic conditions, cobalt micrograins are formed only in a surface layer of porous silicon. The greater the pores in silicon, the larger the mean size of the ferromagnetic micrograins. The nanocomposites thus fabricated possess ferromagnetic properties and, at specified compositions, are characterized by anomalously large magnitudes of the equatorial or transverse magneto-optical Kerr effect (TMOKE). The magneto-optical properties of the nanocomposites are simulated in the Bruggeman effective-medium approximation. It is shown that the anomalous negative transverse magneto-optical Kerr effect is associated with the oxidized state of porous silicon in the vicinity of the ferromagnetic metal micrograins.  相似文献   

14.
The magnetic properties of cobalt spherical nanoparticles (~ 5–9 nm in size) in a polymer shell are investigated using ferromagnetic resonance (FMR) spectroscopy. The metal-polymer complex is prepared through the frontal polymerization of the cobalt acrylamide (CoAAm) complex, followed by the thermolysis at a temperature of 643 K. Analysis of the ferromagnetic resonance spectra demonstrates that the material has a high blocking temperature of ~700 K. The anisotropy constant equal to 0.5 erg/cm3 is somewhat larger than the anisotropy constants characteristic of cobalt macrostructures. This difference is associated with the predominance of the surface anisotropy of nanoparticles. The surface anisotropy constant is calculated to be 0.17 erg/cm2, and the anisotropy field is determined to be ~350 Oe. It is revealed that the polymer shell affects the magnetic properties of nanoparticles.  相似文献   

15.
We report a versatile electron beam (e-beam) synthesis method for the local fabrication of ferromagnetic nanocrystals “on demand”. A localized irradiation in a transmission electron microscope (TEM) is used to convert a raw cobalt fluoride material into ferromagnetic metal by means of formation of a short-range ordered distribution of well-defined faceted three-dimensional (3D) cobalt nanocrystals on the carbon substrate. A range of sizes and morphologies can be obtained, depending on the size, intensity, and acceleration voltage of the e-beam and on the initial size/thickness of the 3D raw fluoride materials, with 300 kV acceleration voltage and thermionic LaB6 emission found most favorable. The nanofabrication of locally quasi-monodispersed, small sized, and well-distributed 3D nanocrystals opens up the possibility to generate particle arrays on demand with desirable magnetic properties.  相似文献   

16.
The magnetic properties of 3d-metal clusters significantly differ from bulk behavior and, for small clusters, strongly depend on the number of atoms within each cluster. Such phenomena are caused by a narrowing of electronic states and the high ratio of surface to volume atoms giving rise to enhanced magnetic orbital moments. However, even large Fe nanoparticles (6–12 nm) deposited onto ferromagnetic surfaces show enhanced orbital moments. At a low coverage large iron clusters on a cobalt film exhibit a nearly doubled value for the orbital moments when compared to bulk behaviour. With increasing coverage, the orbital moment is clearly reduced. Additionally, the spin and orbital moments of iron and cobalt in Fe50Co50 alloy clusters with a size of 7.5 nm on a nickel substrate have been investigated. FeCo alloys are known to exhibit very high magnetic moments for soft magnetic materials. PACS 73.22.-f; 75.75.+a; 81.07.-b  相似文献   

17.
Ermete Antolini   《Solid State Ionics》2004,170(3-4):159-171
The formation, structure and transport properties of LiCoO2 are described. LiCoO2 exhibits two crystal structures, depending on both the preparation method and synthesis temperature. High temperature lithium cobalt oxide (HT-LiCoO2) has a hexagonal layered structure, while the low temperature oxide (LT-LiCoO2) has a cubic spinel-related structure. The dependence of the morphological characteristics (grain size, size distribution, crystallinity) of LiCoO2 on synthesis method as well as their effect on the electrochemical properties are extensively reviewed. As the electrochemical properties and the electrical conductivity strongly depend on the structure of the oxide, primary attention is given to lithium cobalt oxide with defect structure and lithium and oxygen nonstoichiometry.  相似文献   

18.
Nanocrystalline ZnO thin films were chemically deposited on glass substrates using two different precursors namely, zinc sulphate and zinc nitrate. XRD studies confirm that the films are polycrystalline zinc oxide having hexagonal wurtzite structure with crystallite size in the range 25-33 nm. The surface morphology of film prepared using zinc sulphate exhibits agglomeration of small grains throughout the surface with no visible holes or faulty zones, while the film prepared using zinc nitrate shows a porous structure consisting of grains with different sizes separated by empty spaces. The film prepared using zinc sulphate shows higher reflectance due to its larger refractive index which is related to the packing density of grains in the film. Further, the film prepared using zinc sulphate is found to have normal dispersion for the wavelength range 550-750 nm, whereas the film prepared using zinc nitrate has normal dispersion for the wavelength range 450-750 nm. The direct optical band gaps in the two films are estimated to be 3.01 eV and 3.00 eV, respectively. The change in film resistance with temperature has been explained on the basis of two competing processes, viz. thermal excitation of electrons and atmospheric oxygen adsorption, occurring simultaneously. The activation energies of the films in two different regions indicate the presence of two energy levels - one deep and one shallow near the bottom of the conduction band in the bandgap.  相似文献   

19.
The influence of the granulometric properties of powdered metal on the density dependence of its conductivity is studied by the example of metallic scandium. It is found that a decrease in the grain size leads to an increase in the compression force necessary to rupture oxide films at the sites of grain contact and thereby carry the powder to the conducting state. It is shown that this force correlates with the content of scandium oxide forming a film on the grain surface. When the grain size range expands, the conductivity critical index decreases substantially because of an increase in the density of a conducting percolation cluster formed by the contacting metallic bases of the grains.  相似文献   

20.
In this paper a theoretical study of the band structure of collective modes of binary ferromagnetic systems formed by a submicrometric periodic array of cylindrical cobalt nanodots partially or completely embedded into a permalloy ferromagnetic film is performed. The binary ferromagnetic systems studied are two-dimensional periodic, but they can be regarded as three-dimensional, since the magnetization is non uniform also along the z direction due to the contrast between the saturation magnetizations of the two ferromagnetic materials along the thickness. The dynamical matrix method, a finite-difference micromagnetic approach, formulated for studying the dynamics in one-component periodic ferromagnetic systems is generalized to ferromagnetic systems composed by F ferromagnetic materials. It is then applied to investigate the spin dynamics in four periodic binary ferromagnetic systems differing each other for the volume of cobalt dots and for the relative position of cobalt dots within the primitive cell. The dispersion curves of the most representative frequency modes are calculated for each system for an in-plane applied magnetic field perpendicular to the Bloch wave vector. The dependence of the dispersion curves on the cobalt quantity and position is discussed in terms of distribution of effective “surface magnetic charges” at the interface between the two ferromagnetic materials. The metamaterial properties in the propagative regime are also studied (1) by introducing an effective magnetization and effective “surface magnetic charges” (2) by describing the metamaterial wave dispersion of the most representative mode in each system within an effective medium approximation and in the dipole-exchange regime. It is also shown that the interchange between cobalt and permalloy does not necessarily lead to an interchange of the corresponding mode dispersion. Analogously to the case of electromagnetic waves in two-dimensional photonic crystals, the degree of localization of the localized collective modes is expressed in terms of an energy concentration factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号