首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
It is shown that the following three limits
  相似文献   

2.
For a homogeneous diffusion process (X t ) t?0, we consider problems related to the distribution of the stopping times $\begin{gathered} \gamma _{\max } = \inf \{ t \geqslant 0:\mathop {\sup }\limits_{s \leqslant t} X_s - X_t \geqslant H\} ,\gamma _{\min } = \inf \{ t \geqslant 0:X_t - \mathop {\inf }\limits_{s \leqslant t} X_s \geqslant H\} , \hfill \\ \kappa _0 = \inf \{ t \geqslant 0:\mathop {\sup }\limits_{s \leqslant t} X_s - \mathop {\inf }\limits_{s \leqslant t} X_s \geqslant H\} . \hfill \\ \end{gathered} $ . The results obtained are used to construct an inductive procedure allowing us to find the distribution of the increments of the process X between two adjacent kagi and renko instants of time.  相似文献   

3.
Let u = (u n ) be a sequence of real numbers whose generator sequence is Cesàro summable to a finite number. We prove that (u n ) is slowly oscillating if the sequence of Cesàro means of (ω n (m−1)(u)) is increasing and the following two conditions are hold:
$\begin{gathered} \left( {\lambda - 1} \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{\left[ {\lambda n} \right] - n}}\sum\limits_{k = n + 1}^{\left[ {\lambda n} \right]} {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ + , q > 1, \hfill \\ \left( {1 - \lambda } \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{n - \left[ {\lambda n} \right]}}\sum\limits_{k = \left[ {\lambda n} \right] + 1}^n {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ - , q > 1, \hfill \\ \end{gathered}$\begin{gathered} \left( {\lambda - 1} \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{\left[ {\lambda n} \right] - n}}\sum\limits_{k = n + 1}^{\left[ {\lambda n} \right]} {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ + , q > 1, \hfill \\ \left( {1 - \lambda } \right)\mathop {\lim \sup }\limits_n \left( {\frac{1} {{n - \left[ {\lambda n} \right]}}\sum\limits_{k = \left[ {\lambda n} \right] + 1}^n {\left( {\omega _k^{\left( m \right)} \left( u \right)} \right)^q } } \right)^{\frac{1} {q}} = o\left( 1 \right), \lambda \to 1^ - , q > 1, \hfill \\ \end{gathered}  相似文献   

4.
В РАБОтЕ ОпРЕДЕлЕНы У слОВИь, ОБЕспЕЧИВАУЩ ИЕ ВыпОлНЕНИЕ сООтНОшЕ НИИ ВИДА $$\begin{array}{*{20}c} {\mathop {\lim }\limits_{n \to \infty } E(h_n ,B_n ,F_n ) = E(f,B,F),} \\ {\mathop {\lim }\limits_{n \to \infty } \mathop {\sup }\limits_{h_n \in K_n } E(h_n ,B_n ,F_n ) = \mathop {\sup }\limits_{f \in K} E(f,B,F),} \\ \end{array}$$ гДЕE(g, H, M) — НАИлУЧшЕЕ пРИ БлИжЕНИЕ ЁлЕМЕНтАg ЁлЕМЕНтАМИ ИжH В МЕтР ИкЕ НОРМИРОВАННОгО пРОстРАНстВАM, K n ,K — НЕк ОтОРыЕ МНОжЕстВА ЁлЕ МЕНтОВ. с пОМОЩьУ ЁтИх РАВЕНс тВ пОлУЧЕНы ВсЕ ИжВЕс тНыЕ пРЕДЕльНыЕ тЕОРЕМы Д ль НАИлУЧшИх пРИБлИжЕНИИ ФУНкцИИ АлгЕБРАИЧЕскИМИ И тРИгОНОМЕтРИЧЕскИМ И МНОгОЧлЕНАМИ И сплА ИНАМИ, А тАкжЕ ДОкАжАН РьД НО Вых РЕжУльтАтОВ. В ЧАс тНОстИ, пОлУЧЕНы пРЕДЕльНыЕ сООтНОшЕНИь МЕжДУ тОЧНыМИ ВЕРхНИ МИ гРАНьМИ НАИлУЧшИх пРИБлИжЕНИИ НА МНОгОМЕРНых клАсс Ах гЕльДЕРА.  相似文献   

5.
The author investigated how big the lag increments of a 2-parameter Wiener process is in [1]. In this paper the limit inferior results for the lag increments are discussed and the same results as the Wiener process are obtained. For example, if $\[\mathop {\lim }\limits_{T \to \infty } \{ \log T/{a_T} + \log (\log {b_T}/a_T^{1/2} + 1)\} /\log \log T = r,0 \leqslant r \leqslant \infty \] $ then $\[\mathop {\lim }\limits_{\overline {T \to \infty } } \mathop {\sup }\limits_{{a_T} \leqslant t \leqslant T} \mathop {\sup }\limits_{t \leqslant s \leqslant T} \mathop {\sup }\limits_{R \in L_s^*(t)} |W(R)|/d(T,t) = {\alpha _r},a.s.,\] $ $\[\mathop {\lim }\limits_{\overline {T \to \infty } } \mathop {\sup }\limits_{{a_T} \leqslant t \leqslant T} \mathop {\sup }\limits_{R \in {{\tilde L}_T}(t)} |W(R)|/d(T,t) = {\alpha _r},a.s.,\] $ where $\alpha _r=(r/(r+1))^{1/2}$, $L*_s(t)$ and $\tider L_T(t)$ are the sets of rectangles which satisfy some conditions. Moreover, the limit inferior results of another class of lag increments are discussed.  相似文献   

6.
Пусть Λ=(λn) — возрастаю щая к+∞ последователь ность неотрицательных чис ел, λ0=0, а S+(Λ) — класс абсолют но сходящихся в С рядо в Дирихле вида $$F\left( z \right) = \mathop \sum \limits_{k = 0}^\infty a_k \exp \left\{ {z\lambda _k } \right\},$$ где a0=1 и ak>0 (k∈N). Положим $$\begin{gathered} S_n \left( z \right) = \mathop \sum \limits_{k = 1}^\infty a_k \exp \left\{ {z\lambda _k } \right\}, \hfill \\ \sigma _n \left( F \right) = \max \left\{ {\frac{1}{{S_n \left( x \right)}} - \frac{1}{{F\left( x \right)}}:x \in R} \right\}. \hfill \\ \end{gathered} $$ Доказано, что для того, чтобы для любой функц ии F∈S+(Λ) выполнялось равенст во $$\mathop {\lim \sup }\limits_{n \to \infty } \frac{1}{{\ln n}}\ln \frac{1}{{\sigma _n \left( F \right)}} = + \infty ,$$ необходимо и достато чно, чтобы $$\mathop \sum \limits_{n = 1}^\infty \frac{1}{{n\lambda _n }}< + \infty .$$ Аналогичные результ ы получены для различ ных подклассов классаS + (Λ), определяемых условиями на убывани е коэффициентова n.  相似文献   

7.
В работе для неотрица тельных последовате льностей (...,a ?1 i ), aa 0 i ),a 1 i ), ...), удовлетв оряющих условию \(0< \mathop {\sup }\limits_k a_k^{(i)}< \infty\) (i=1,...,т), доказ а но неравенство (1) $$\begin{gathered} \mathop \sum \limits_{k = - \infty }^\infty \mathop {\sup }\limits_{k \leqq k_1 + \ldots + k_m \leqq k + l} (a_{k_1 }^{(1)} \ldots a_{k_m }^{(m)} ) \geqq \hfill \\ \geqq \mathop \prod \limits_{i = 1}^m (\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )\left[ {\mathop \sum \limits_{i = 1}^m \frac{{\mathop \sum \limits_{k = - \infty }^\infty (a_k^{(i)} )^{p_i } }}{{(\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )^{p_i } }} + l - m + 1} \right], \hfill \\ \end{gathered}$$ гдеl произвольное не отрицательное целое число, 1≦p 1, ...,p m ≦∞ и \(\mathop \sum \limits_{i = 1}^m p_i^{ - 1} = 1\) . Это неравенство явля ется обобщением и уто чнением неравенств А. Прекопа, Ш. Данча и Л. Лейндлера. Доказано также, что ес ли все последователь ности содержат только коне чное число ненулевых членов, то н еобходимым условием для равенства в (1) является существование такого числа α>0, чтоa k( i )=а илиa k( i )=0 для всехi=1,...,m;?∞<k<∞.  相似文献   

8.
We show that a Banach space valued random variableX such that t} \right\} = 0$$ " align="middle" border="0"> satisfies the central limit theorem if and only if the following criterion on small balls is fulfilled:
t} \right\} = 0$$ " align="middle" vspace="20%" border="0">  相似文献   

9.
Exact solutions are obtained for the first time for the half-space boundary-value problem for the vector model kinetic equations
0, \mathop {\lim }\limits_{x \to + 0} \Psi (x,\mu ) = {\rm A}, \mu< 0, \hfill \\ \end{gathered}$$ " align="middle" vspace="20%" border="0">  相似文献   

10.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

11.
In this paper, we firstly give a new definition, namely, the T point of algebroid functions. Then by using Ahlfors’ theory of covering surfaces, we prove the existence of these points for any ν-valued algebroid functions in the unit disk satisfying $\mathop {\lim \sup }\limits_{r \to 1^ - } \frac{{T(r,w)}} {{\log \tfrac{1} {{1 - r}}}} = + \infty $\mathop {\lim \sup }\limits_{r \to 1^ - } \frac{{T(r,w)}} {{\log \tfrac{1} {{1 - r}}}} = + \infty . This extends the recent results of Xuan, Wu and Sun.  相似文献   

12.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

13.
A well known “zero-two law" shows that if is a strongly continuous one-parameter group of bounded operators on a Banach space X, and if then Here we discuss analogous problems for general unital representations θ of a topological group G on a unital Banach algebra A. Let 1 be the unit of G, and I the unit element of A. We show that either or if, moreover, θ admits “continuous division by any positive integer”, then, either or Our argument also gives automatic continuity results for representations of abelian Baire groups on a separable Banach algebra and representations of compact non abelian groups on a Banach algebra which are locally bounded and satisfy Received: 8 June 2005; revised: 13 October 2005  相似文献   

14.
It is proved that the limit $$\mathop {\lim }\limits_{\Delta \to \infty } \mathop {\sup }\limits_\gamma \tfrac{1}{\Delta }\int_0^\Delta {f(\gamma (t))dt} $$ , wheref: ? → ? is a locally integrable (in the sense of Lebesgue) function with zero mean and the supremum is taken over all solutions of the generalized differential equation γ ∈ [ω1, ω2], coincides with the limit $$\mathop {\lim }\limits_{T \to \infty } \mathop {\sup }\limits_{c \geqslant 0} \varphi _f (k,{\mathbf{ }}T,{\mathbf{ }}c)$$ , where $$\varphi _f = \frac{{(k - 1)\bar I_f (T,c)}}{{1 + (k - 1)\bar \lambda _f (T,c)}},k = \frac{{\omega _2 }}{{\omega _1 }}$$ . Here ¯λf = λf /T, ¯ If =If/T, and λf is the Lebesgue measure of the set $$\{ \gamma \in [\gamma _0 ,\gamma _0 + T]:f(\gamma ) \geqslant c\} = A_f ,I_f = \int_{A_f } {f(\gamma )d\gamma } $$ . It is established that this limit always exists for almost-periodic functionsf.  相似文献   

15.
Let {Y i;∞ < i < ∞} be a doubly infinite sequence of identically distributed-mixing random variables and let {a i;∞ < i < ∞} be an absolutely summable sequence of real numbers.In this paper we study the moments of sup(1 ≤ r < 2,p > 0) under the conditions of some moments.  相似文献   

16.
Пусть Tn(f)={L1(f), ..., Ln(f)} — набор линейных функционал ов, заданных на простран стве \(C_{(r - 1)} (\parallel f\parallel _{C_{(r - 1)} } = \mathop {\max }\limits_{0 \leqq i \leqq r - 1} \parallel f^{(i)} \parallel _C );A_{n,r}\) — множество всех так их наборов функцио налов; С2n, 2 — множество всех н аборов из 2n функциона лов вида $$T_{2n} (f) = \{ f(x_1 ), \ldots ,f(x_n ),f'(x_1 ), \ldots ,f'(x_n )\}$$ и s: Еn→Е1. Доказано, что е слиW r множество всех 2π-периодических функ цийfεW∞0, 2πr, то приr=1,2,3,... ирε(1, ∞) и $$\begin{gathered} \mathop {\inf }\limits_{T_{2n} \in A_{2n,r} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \varphi _{n,r} \parallel _p \hfill \\ \mathop {\inf }\limits_{T_{2n} \in C_{2n,2} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \parallel \varphi _{n,r} \parallel _\infty - \varphi _{n,r} \parallel _p , \hfill \\ \end{gathered}$$ где ?n,rr-й периодичес кий интеграл, в средне м равный нулю на периоде, от фун кции ?n, 0t=sign sinnt. При этом указан ы оптимальные методы приближенного вычис ления.  相似文献   

17.
$\mathop {\lim \sup }\limits_{r \to \infty } \frac{{E_{n_i ,m_i } (f)_L }}{{[E_{n_i ,\infty } (f)_L + E_{\infty ,m_i } (f)_L ]ln\{ 2 + min(n_i ,m_i )\} }}\underset{\raise0.3em\hbox{$\mathop {\lim \sup }\limits_{r \to \infty } \frac{{E_{n_i ,m_i } (f)_L }}{{[E_{n_i ,\infty } (f)_L + E_{\infty ,m_i } (f)_L ]ln\{ 2 + min(n_i ,m_i )\} }}\underset{\raise0.3em\hbox{  相似文献   

18.
In this paper,we have discussed constructive properties of a kind of uniformly almost periodic functions, of which the sequence of its Fourier exponents has unique limit point at infinity. \[\begin{gathered} f(x) \sim \sum\limits_{k = - \infty }^\infty {{A_k}} {e^{i{\Lambda _k}x}} \hfill \ {\Lambda _0} = \alpha ,0 < \alpha \leqslant {\Lambda _k} < {\Lambda _{k + 1}}(k = 0,1,2,...) \hfill \ \mathop {\lim }\limits_{k \to \infty } {\Lambda _k} = \infty ,{\Lambda _k} = - {\Lambda _k} \hfill \ |{\Lambda _k}| + |{\Lambda _{ - k}}| > 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (k \ne 0) \hfill \\ \end{gathered} \] Analogons to the approximation theory of periodic functioiis, we get some theorems similar to the Jackson theorem, Bernstein theorem and Zygmund theorem of periodio functions.  相似文献   

19.
Let X, X1, X2,... be i.i.d, random variables with mean zero and positive, finite variance σ^2, and set Sn = X1 +... + Xn, n≥1. The author proves that, if EX^2I{|X|≥t} = 0((log log t)^-1) as t→∞, then for any a〉-1 and b〉 -1,lim ε↑1/√1+a(1/√1+a-ε)b+1 ∑n=1^∞(logn)^a(loglogn)^b/nP{max κ≤n|Sκ|≤√σ^2π^2n/8loglogn(ε+an)}=4/π(1/2(1+a)^3/2)^b+1 Г(b+1),whenever an = o(1/log log n). The author obtains the sufficient and necessary conditions for this kind of results to hold.  相似文献   

20.
For a continuous almost periodic function , we show that the function
where the supremum is taken over all solutions of the system of differential inclusion , , has the following limit (as μ→+0):
, Thus if the parameter μ is small, then and the limit of the maximal mean can approximately be determined by solving problems of smaller dimensionality. Moreover, if the compact sets and are nondegenerate, then Ψ f is independent of initial data. Translated fromMatematicheskie Zametki, Vol. 66, No. 3, pp. 431–438, September, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号