首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

2.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

3.
The synthesis and characterisation of a pyridazine-containing two-armed grid ligand L2 (prepared from one equivalent of 3,6-diformylpyridazine and two equivalents of p-anisidine) and the resulting transition metal (Zn, Cu, Ni, Co, Fe, Mn) complexes (1-9) are reported. Single-crystal X-ray structure determinations revealed that the copper(I) complex had self-assembled as a [2 x 2] grid, [Cu(I) (4)(L2)(4)][PF(6)](4).(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25) (2.(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25)), whereas the [Zn(2)(L2)(2)(CH(3)CN)(2)(H(2)O)(2)][ClO(4)](4).CH(3)CN (1.CH(3)CN), [Ni(II) (2)(L2)(2)(CH(3)CN)(4)][BF(4)](4).(CH(3)CH(2)OCH(2)CH(3))(0.25) (5 a.(CH(3)CH(2)OCH(2)CH(3))(0.25)) and [Co(II) (2)(L2)(2)(H(2)O)(2)(CH(3)CN)(2)][ClO(4)](4).(H(2)O)(CH(3)CN)(0.5) (6 a.(H(2)O)(CH(3)CN)(0.5)) complexes adopt a side-by-side architecture; iron(II) forms a monometallic cation binding three L2 ligands, [Fe(II)(L2)(3)][Fe(III)Cl(3)OCl(3)Fe(III)].CH(3)CN (7.CH(3)CN). A more soluble salt of the cation of 7, the diamagnetic complex [Fe(II)(L2)(3)][BF(4)](2).2 H(2)O (8), was prepared, as well as two derivatives of 2, [Cu(I) (2)(L2)(2)(NCS)(2)].H(2)O (3) and [Cu(I) (2)(L2)(NCS)(2)] (4). The manganese complex, [Mn(II) (2)(L2)(2)Cl(4)].3 H(2)O (9), was not structurally characterised, but is proposed to adopt a side-by-side architecture. Variable temperature magnetic susceptibility studies yielded small negative J values for the side-by-side complexes: J=-21.6 cm(-1) and g=2.17 for S=1 dinickel(II) complex [Ni(II) (2)(L2)(2)(H(2)O)(4)][BF(4)](4) (5 b) (fraction monomer 0.02); J=-7.6 cm(-1) and g=2.44 for S= 3/2 dicobalt(II) complex [Co(II) (2)(L2)(2)(H(2)O)(4)][ClO(4)](4) (6 b) (fraction monomer 0.02); J=-3.2 cm(-1) and g=1.95 for S= 5/2 dimanganese(II) complex 9 (fraction monomer 0.02). The double salt, mixed valent iron complex 7.H(2)O gave J=-75 cm(-1) and g=1.81 for the S= 5/2 diiron(III) anion (fraction monomer=0.025). These parameters are lower than normal for Fe(III)OFe(III) species because of fitting of superimposed monomer and dimer susceptibilities arising from trace impurities. The iron(II) centre in 7.H(2)O is low spin and hence diamagnetic, a fact confirmed by the preparation and characterisation of the simple diamagnetic iron(II) complex 8. M?ssbauer measurements at 77 K confirmed that there are two iron sites in 7.H(2)O, a low-spin iron(II) site and a high-spin diiron(III) site. A full electrochemical investigation was undertaken for complexes 1, 2, 5 b, 6 b and 8 and this showed that multiple redox processes are a feature of all of them.  相似文献   

4.
The syntheses, X-ray structures, and magnetic behaviors of two new cyano-bridged assemblies, the molecular [Mn(III)(salen)H2O]3[W(V)(CN)8].H2O (1) and one-dimensional [Mn(salen)(H2O)2]2[[Mn(salen)(H2O)][Mn(salen)]2[Mo(CN)(8)]].0.5ClO4.0.5OH.4.5H2O (2), are presented. Compound 1 crystallizes in the monoclinic system, has space group P2(1)/c, and has unit cell constants a = 13.7210(2) A, b = 20.6840(4) A, c = 20.6370(2) A, and Z = 4. Compound 2 crystallizes in the triclinic system, has space group P, and has unit cell dimensions a = 18.428(4) A, b = 18.521(3) A, c = 18.567(4) A, and Z = 2. The structure of 1 consists of the asymmetric V-shaped Mn-NC-W-NC-Mn-O(phenolate)-Mn molecules, where W(V) coordinates with [Mn(salen)H2O] and singly phenolate-bridged [Mn(salen)H2O]2 moieties through the neighboring cyano bridges. The [W(V)(CN)8]3- ion displays distorted square-antiprism geometry. The structure of 2 consists of the cyano-bridged [Mn3(III)Mo(IV)]n- repeating units linked by double phenolate bridges into one-dimensional zigzag chains. The Mn(III) centers are bound to Mo(IV) of square-antiprism geometry through the neighboring cyano bridges. The magnetic studies of 1 reveal the antiferromagnetic intramolecular interactions through the CN and phenolate bridges and the relatively weak intermolecular interactions. Compound 1 becomes antiferromagnetically ordered below TN = 4.6 K. The presence of the magnetic anisotropy is documented with the MH measurements carried out for both polycrystalline and single-crystal samples. At T = 1.9 K, the spin-flop transition is observed in the field of 18 kOe applied parallel to the bc plane, which is the easy plane of magnetization. Field dependence of magnetization of 1 shows field-induced metamagnetic behavior from the antiferromagnetic ground state of ST = 3/2 to the state of ST = 5/2. The magnetic properties of 2 indicate a weak antiferromagnetic interaction between Mn(III) centers in double-phenolate-bridged [Mn(III)(salen)]2 dinuclear subunits and a very weak ferromagnetic interaction between them through the diamagnetic [Mo(IV)(CN)8]4- spacer.  相似文献   

5.
Yeung WF  Lau PH  Lau TC  Wei HY  Sun HL  Gao S  Chen ZD  Wong WT 《Inorganic chemistry》2005,44(19):6579-6590
The synthesis, structures, and magnetic properties of four cyano-bridged M(II)Ru(III)2 compounds prepared from the paramagnetic Ru(III) building blocks, trans-[Ru(salen)(CN)2]- 1 [H2salen = N,N'-ethylenebis(salicylideneimine)] and trans-[Ru(acac)2(CN)2]- (Hacac = acetylacetone), are described. Compound 2, {Mn(CH3OH)4[Ru(salen)(CN)2]2}.6CH3OH.2H2O, is a trinuclear complex that exhibits antiferromagnetic coupling between Mn(II) and Ru(III) centers. Compound 3, {Mn(H2O)2[Ru(salen)(CN)2]2.H2O}n, has a 2-D sheetlike structure that exhibits antiferromagnetic coupling between Mn and Ru, leading to ferrimagnetic-like behavior. Compound 4, {Ni(cyclam)[Ru(acac)2(CN)2]2}.2CH3OH.2H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane), is a trinuclear complex that exhibits ferromagnetic coupling. Compound 5, {Co[Ru(acac)2(CN)2]2}n, has a 3-D diamond-like interpenetrating network that exhibits ferromagnetic ordering below 4.6 K. The density functional theory (DFT) method was used to calculate the molecular magnetic orbitals and the magnetic exchange interaction between Ru(III) and M(II) (Mn(II), Ni(II)) ions.  相似文献   

6.
A series of new heterometallic coordination polymers has been prepared from the reaction of metal-ligand cations and KAg(CN)(2) units. Many of these contain silver-silver (argentophilic) interactions, analogous to gold-gold interactions, which serve to increase supramolecular structural dimensionality. Compared to [Au(CN)(2)](-) analogues, these polymers display new trends specific to [Ag(CN)(2)](-), including the formation of [Ag(2)(CN)(3)](-) and the presence of Ag...N interactions. [Cu(en)(2)][Ag(2)(CN)(3)][Ag(CN)(2)] (1, en = ethylenediamine) forms 1-D chains of alternating [Ag(CN)(2)](-) and [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.102(1) A. These chains are connected into a 2-D array by strong cyano(N)-Ag interactions of 2.572(3) A. [Cu(dien)Ag(CN)(2)](2)[Ag(2)(CN)(3)][Ag(CN)(2)] (2, dien = diethylenetriamine) forms a 1-D chain of alternating [Cu(dien)](2+) and [Ag(CN)(2)](-) ions with the Cu(II) atoms connected in an apical/equatorial fashion. These chains are cross-linked by [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.1718(8) A and held weakly in a 3-D array by argentophilic interactions of 3.2889(5) A between the [Ag(CN)(2)](-) in the 2-D array and the remaining free [Ag(CN)(2)](-). [Ni(en)][Ni(CN)(4)].2.5H(2)O (4) was identified as a byproduct in the reaction to prepare the previously reported [Ni(en)(2)Ag(2)(CN)(3)][Ag(CN)(2)] (3). In [Ni(tren)Ag(CN)(2)][Ag(CN)(2)] (5, tren = tris(2-aminoethyl)amine), [Ni(tren)](2+) cations are linked in a cis fashion by [Ag(CN)(2)](-) anions to form a 1-D chain similar to the [Au(CN)(2)](-) analogue. [Cu(en)Cu(CN)(2)Ag(CN)(2)] (6) is a trimetallic polymer consisting of interpenetrating (6,3) nets stabilized by d(10)-d(10) interactions between Cu(I)-Ag(I) (3.1000(4) A). Weak antiferromagnetic coupling has been observed in 2, and a slightly stronger exchange has been observed in 6. The Ni(II) complexes, 4 and 5, display weak antiferromagnetic interactions as indicated by their relatively larger D values compared to that of 3. Magnetic measurements on isostructural [Ni(tren)M(CN)(2)][M(CN)(2)] (M = Ag, Au) show that Ag(I) is a more efficient mediator of magnetic exchange as compared to Au(I). The formation of [Ni(CN)(4)](2)(-), [Ag(2)(CN)(3)](-), and [Cu(CN)(2)](-) are all attributed to secondary reactions of the dissociation products of the labile KAg(CN)(2).  相似文献   

7.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

8.
The diamagnetic complex [Re(CN)8]3- is shown to react with Mn2+ ions in methanol to generate the centered, face-capped octahedral cluster (CH3OH)24Mn9Re6(CN)48, which is structurally analogous to (CH3OH)24Mn9Mo6(CN)48. Related reactions involving stoichiometric mixtures of octacyanometalate complexes generate the substituted species (CH3OH)24Mn9Mo5Re(CN)48, (CH3OH)24Co9Mo5Re(CN)48, (CH3OH)24Mn9Mo3Re3(CN)48, (CH3OH)24Mn9W5Re(CN)48 and (CH3OH)24Co9W5Re(CN)48, in which the O(h) symmetry of the cluster core is broken. Reassessment of the magnetic properties of the Mn9Mo6(CN)48 cluster confirm that it possesses a ground state spin of S = 39/2, but does not exhibit single-molecule-magnet behavior. Lowering the symmetry of the molecule by substitutions of ReV at one or three of the MoV sites does not lead to an overall increase in the magnetic anisotropy, as probed by ac magnetic susceptibility measurements. A similar result occurs for the other substituted species, with the important exception of the new single-molecule magnet (CH3OH)24Co9W5Re(CN)48, for which the spin reversal barrier is significantly reduced relative to that observed previously in (CH3OH)24Co9W6(CN)48.  相似文献   

9.
The synthesis, crystal structure, and physical characterization of the coordination compounds [Ni(en)2]4[Fe(CN)5NO]2[Fe(CN)6]x5H2O (1), [Ni(en)2][Fe(CN)5NO]x3H2O (2), [Mn(3-MeOsalen)(H2O)]2[Fe(CN)5NO] (3), and [Mn(5-Brsalen)]2[Fe(CN)5NO] (4) are presented. 1 crystallizes in the monoclinic space group P2(1)/n (a = 7.407(4) A, b = 28.963(6) A, c = 14.744(5) A, alpha = 90 degrees, beta = 103.26(4) degrees, gamma = 90 degrees, Z = 2). Its structure consists of branched linear chains formed by cis-[Ni(en)2]2+ cations and ferrocyanide and nitroprusside anions. The presence of two kinds of iron(II) sites has been demonstrated by M?ssbauer spectroscopy. 2 crystallizes in the monoclinic space group P2(1)/c (a = 11.076(3) A, b = 10.983(2) A, c = 17.018(5) A, alpha = 90 degrees, beta = 107.25(2) degrees, gamma = 90 degrees, Z = 4). Its structure consists of zigzag chains formed by an alternated array of cis-[Ni(en)2]2+ cations and nitroprusside anions. 3 crystallizes in the triclinic space group P1 (a = 8.896(5) A, b = 10.430(5) A, c = 12.699(5) A, alpha = 71.110(5) degrees, beta = 79.990(5) degrees, gamma = 89.470(5) degrees, Z = 1). Its structure comprises neutral trinuclear bimetallic complexes in which a central [Fe(CN)5NO]2- anion is linked to two [Mn(3-MeOsalen)]+ cations. 4 crystallizes in the tetragonal space group P4/ncc (a = 13.630(5) A, c = 21.420(8) A, Z = 4). Its structure shows an extended 2D neutral network formed by cyclic octameric [-Mn-NC-Fe-CN-]4 units. The magnetic properties of these compounds indicate the presence of quasi-isolated paramagnetic Ni2+ and Mn3+. Irradiated samples of the four compounds have been studied by differential scanning calorimetry to detect the existence of the long-lived metastable states of nitroprusside.  相似文献   

10.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

11.
Reaction of acidified (pH approximately 7) sodium tungstate solutions with transition metal cations (Fe(3+), Ni(2+), Zn(2+), Co(2+)) leads to the formation of transition-metal-disubstituted Keggin-type heteropolytungstates with 3d-metal ions distributed over three different positions. A detailed investigation of the synthesis conditions confirmed that the complexes could equally be obtained using aqueous solutions of either Na(2)WO(4).2H(2)O (sodium monotungstate) at pH approximately 7, Na(6)[W(7)O(24)]. approximately 14H(2)O (sodium paratungstate A), or Na(10)[H(2)W(12)O(42)].27H(2)O (sodium paratungstate B) as starting materials. Three complexes, (NH(4))(6)Ni(II)(0.5)[alpha-Fe(III)O(4)W(11)O(30)Ni(II)O(5)(OH(2))].18H(2)O, (NH(4))(7)Zn(0.5)[alpha-ZnO(4)W(11)O(30) ZnO(5)(OH(2))].18H(2)O, and (NH(4))(7)Ni(II)(0.5)[alpha-ZnO(4)W(11)O(30)Ni(II)O(5)(OH(2))].18H(2)O were isolated in crystalline form. X-ray single-crystal structure analysis revealed that the solid-state structures of the three compounds consist of four main structural fragments, namely [MO(4)W(11)O(30)M'O(5)(OH(2))](n-) (Keggin-type, alpha-isomer) heteropolytungstates, hexaquo metal cations, [M'(OH(2))(6)](2+), ammonium-water cluster ions, [(NH(4)(+))(8)(OH(2))(12)], and additional ammonium cations and water molecules. The 3d metals occupy the central (tetrahedral, M) and the peripheral (octahedral, M') positions of the Keggin anion, as well as cationic sites (M') outside of the polyoxotungstate framework. UV-vis spectroscopy, solution ((1)H, (183)W) and solid-state ((1)H) NMR, and also chemical analysis data provided evidence that the 3d-metal-disubstituted Keggin anions do not exist in solution but are being formed only during the crystallization process. Investigations in the solid state and in solution were completed by ESR, IR, and Raman measurements.  相似文献   

12.
Two bimetallic assemblies, [Ni(tn)(2)](2)[Cr(CN)(5)(NO)]OH.H(2)O (1) and [Ni(tn)(2)](2)[Co(CN)(6)]NO(3).2H(2)O (2) (tn = 1,3-diaminopropane), have been prepared and structurally and magnetically characterized. Crystal data for 1 (2): space group P1 (P1), a = 8.698(3) (8.937(2)) A, b = 10.001(2) (9.863(1)) A, c = 10.158(2) (10.064(1)) A, alpha = 87.40(2) (86.064(10)) degrees, beta = 65.10(2) (65.489(10)) degrees, gamma = 81.63(2) (81.572(12)) degrees and Z = 1 (1). Both structures consist of two-dimensional grid-like polycations containing Ni-N triple bond C-M linkages (M = Cr or Co) and counteranions (OH, NO(3)). Magnetic studies of 1 showed that the complex displays a metamagnetic behavior originating from intralayer ferromagnetic and interlayer antiferromagnetic interactions. Long-range antiferromagnetic ordering was observed at T(N) = 3.3 K. Complex 2 exhibits intramolecular ferromagnetic interactions through the diamagnetic N triple bond C-Co-N triple bond C bridges, owing to superexchange involving the empty d(sigma) orbital of the diamagnetic Co(III) ion.  相似文献   

13.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

14.
Treatment of several divalent transition-metal trifluoromethanesulfonates [M(II)(OTf)2; M(II) = Mn, Co, Ni] with [NEt4][Tp*Fe(III)(CN)3] [Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate] in DMF affords three isostructural rectangular clusters of {[Tp*Fe(III)(CN)3M(II)(DMF)4]2[OTf]2} x 2DMF (M(II) = Mn, 3; Co, 4; Ni, 5) stoichiometry. Magnetic studies of 3-5 indicate that the Tp*Fe(CN)3(-) centers are highly anisotropic and exhibit antiferromagnetic (3 and 4) and ferromagnetic (5) exchange to afford S = 4, 2, and 3 spin ground states, respectively. ac susceptibility measurements suggest that 4 and 5 exhibit incipient single-molecule magnetic behavior below 2 K.  相似文献   

15.
Treatment of [HNBu3]3[Mo(V)(CN)8] with manganese(II) p-toluenesulfonate in N,N'-dimethylformamide (DMF) affords {[Mn(II)(DMF)4]3[Mo(V)(CN)8]2}n (1) as a two-dimensional network. The structure of 1 consists of [cis-Mn(II)(DMF)4(mu-NC)2]2+ and [trans-Mn(II)(DMF)4(mu-NC)2]2+ units that are linked via cyanides to three-connected [Mo(V)(CN)5(mu-CN)3]3- centers in a 4:2:6 ratio, forming 12-membered rings. Magnetic measurements indicate that 1 is a ferrimagnet (TN = 8 K) that exhibits frequency-dependent behavior in chi". Heating of 1 affords an additional magnetic phase (TN = 21 K) that is absent of linkage isomerism.  相似文献   

16.
Reactions of [W(CN)(8)](3-/4-) anions with complexes of Mn(2+) ion with tridentate organic ligand 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) lead to a series of heterobimetallic complexes. The crystal structures of these compounds are derived from the same basic structural fragment, namely a W(2)Mn(2) square constructed of alternating cyanide-bridged W and Mn ions. In [Mn(II)(tptz)(OAc)(H(2)O)(2)](2){[Mn(II)(tptz)(MeOH)(1.58)(H(2)O)(0.42)](2)[W(V)(CN)(8)](2)}.5 MeOH.9.85 H(2)O (3), isolated molecular squares are co-crystallized with mononuclear cationic Mn(II) complexes. The structure of {[Mn(II)(tptz)(MeOH)](2)[W(IV)(CN)(8)].2 MeOH}(infinity) (4) is based on an infinite chain of vertex-sharing squares, while {[Mn(II) (2)(tptz)(2)(MeOH)(3)(OAc)][W(V)(CN)(8)].3.5 MeOH0.25 H(2)O}(infinity) (5) and {[Mn(II) (2)(tptz)(2)(MeOH)(3)W(V)(CN)(8)][Mn(II)(tptz)(MeOH)W(V)(CN)(8)].2 H(2).OMeOH}(8) (7) are derived from such an infinite chain by removing one of the W-C[triple bond]N-Mn linkages in each of the squares. The decanuclear cluster [Mn(II) (6)(tptz)(6)(MeOH)(4)(DMF)(2)W(V) (4)(CN)(32)].8.2 H(2)O.2.3 MeOH (6) is a truncated version of structure 4 and consists of three vertex-sharing W(2)Mn(2) squares. The structure of [Mn(II)(tptz)(MeOH)(NO(3))](2)[Mn(II)(tptz)(MeOH) (DMF)](2)[W(V)(CN)(8)](2).6 MeOH (8) consists of a hexanuclear cluster, in which the central W(2)Mn(2) square is extended by two Mn side-arms attached via CN(-) ligands to the W corners of the square. The magnetic behavior of these heterobimetallic complexes (except for 4) is dominated by antiferromagnetic coupling between Mn(II) and W(V) ions mediated by cyanide bridges. Compounds 3, 6, and 8 exhibit high spin ground states of S=4, 13, and 9, respectively, while 5 and 7 exhibit behavior typical of a ferrimagnetic chain with alternating spin centers. Complex 4 contains diamagnetic W(IV) centers but holds promise as a potential photomagnetic solid.  相似文献   

17.
A series of group 6 transition metal half-sandwich complexes with 1,1-dichalcogenide ligands have been prepared by the reactions of Cp*MCl(4)(Cp* = eta(5)-C(5)Me(5); M = Mo, W) with the potassium salt of 2,2-dicyanoethylene-1,1-dithiolate, (KS)(2)C=C(CN)(2) (K(2)-i-mnt), or the analogous seleno compound, (KSe)(2)C=C(CN)(2) (K(2)-i-mns). The reaction of Cp*MCl(4) with (KS)(2)C=C(CN)(2) in a 1:3 molar ratio in CH(3)CN gave rise to K[Cp*M(S(2)C=C(CN)(2))(2)] (M = Mo, 1a, 74%; M = W, 2a, 46%). Under the same conditions, the reaction of Cp*MoCl(4) with 3 equiv of (KSe)(2)C=C(CN)(2) afforded K[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3a) and K[Cp*Mo(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))] (4) in respective yields of 45% and 25%. Cation exchange reactions of 1a, 2a, and 3a with Et(4)NBr resulted in isolation of (Et(4)N)[Cp*Mo(S(2)C=C(CN)(2))(2)] (1b), (Et(4)N)[Cp*W(S(2)C=C(CN)(2))(2)] (2b), and (Et(4)N)[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3b), respectively. Complex 4 crystallized with one THF and one CH(3)CN molecule as a three-dimensional network structure. Inspection of the reaction of Cp*WCl(4) with (KSe)(2)C=C(CN)(2) by ESI-MS revealed the existence of three species in CH(3)CN, [Cp*W(Se(2)C=C(CN)(2))(2)]-, [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-, and [Cp*W(Se(Se(2))C=C(CN)(2))(2)]-, of which [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-(5) was isolated as the main product. Treatment of 2a with 1/4 equiv of S(8) in refluxing THF resulted in sulfur insertion and gave rise to K[Cp*W(S(2)C=C(CN)(2))(S(S(2))C=C(CN)(2))](6), which crystallized with two THF molecules forming a three-dimensional network structure. 6 can also be prepared by refluxing 2a with 1/4 equiv of S(8) in THF. 3a readily added one Se atom upon treatment with 1 mol of Se powder in THF to give 4 in high yield, while the treatment of 3a or 4 with 2 equiv of Na(2)Se in THF led to formation of a dinuclear complex [(Cp*Mo)(2)(mu-Se)(mu-Se(Se(3))C=C(CN)(2))] (7). The structure of 7 consists of two Cp*Mo units bridged by a Se(2-) and a [Se(Se(3))C=C(CN)(2)](2-) ligand in which the triselenido group is arranged in a nearly linear way (163 degrees). The reaction of 2a with 2 equiv of CuBr in CH(3)CN yielded a trinuclear complex [Cp*WCu(2)(mu-Br)(mu(3)-S(2)C=C(CN)(2))(2)] (8), which crystallized with one CH(3)CN and generated a one-dimensional chain polymer through bonding of Cu to the N of the cyano groups.  相似文献   

18.
Yu K  Zhou BB  Yu Y  Su ZH  Yang GY 《Inorganic chemistry》2011,50(5):1862-1867
A new layered molybdenum cobalt phosphate, Na(2)[Co(H(2)O)(6)][(Mo(16)O(32))Co(16)(PO(4))(4) (HPO(4))(16)(H(2)PO(4))(4)(OH)(4)(C(10)H(8)N(2))(4)(C(5)H(4)N)(2)(H(2)O)(6)]·4H(2)O (1), has been hydrothermally synthesized and structurally characterized. 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.6825(18) ?, b = 39.503(4) ?, c = 17.2763(17) ?, β = 93.791(2)°, V = 10679.4(18) ?(3), and Z = 2. A polyoxoanion of 1 exhibits an unusual organic-inorganic hybrid wheel-type cluster, in which two pyridine ligands link to the surface Co(II) atoms of a [H(24)(Mo(16)O(32))Co(16)(PO(4))(24)(OH)(4)(H(2)O)(6)] (namely, {Mo(16)Co(16)P(24)}) wheel via the Co-N bonds. Furthermore, each {Mo(16)Co(16)P(24)} wheel is connected to four adjacent wheels by four pairs of 4,4'-bipyridine linkers, forming a 2D layered network. The susceptibility measurement shows the existence of dominant antiferromagnetic interactions in 1.  相似文献   

19.
Nanospheric hydroxo-bridged clusters of [M(20)(OH)(12)(maleate)(12)(Me(2)NH)(12)](BF(4))(3)(OH)·nH(2)O (M = Co (1), Ni (2)) with O(h) symmetry were afforded under hydrothermal condition with Co(BF(4))(2)·6H(2)O/Ni(BF(4))(2)·6H(2)O and fumaric acid in a DMF/EtOH mixed solvent. They are characterized by elemental analysis, IR, and X-ray diffraction. X-ray single crystal diffraction analyses show that these two complexes are isostructural containing an ideally cubic M(8) core in that each two M atoms are doubly bridged at the edges by one OH(-) and one maleate, while these OH(-) and maleate groups are coordinated further by exterior identical 12 M atoms which construct a perfect M(12) icosahedron to encapsulate the cubic core. To our knowledge, such large clusters with O(h) symmetry are seldom. The variable-temperature magnetic susceptibility studies reveal that these two isostructures exhibit antiferromagnetic interactions.  相似文献   

20.
Zhu G  Parkin G 《Inorganic chemistry》2005,44(26):9637-9639
Mo(PMe(3))(6) and W(PMe(3))(4)(eta(2)-CH(2)PMe(2))H undergo oxidative addition of the O-H bond of RCO(2)H to yield sequentially M(PMe(3))(4)(eta(2)-O(2)CR)H and M(PMe(3))(3)(eta(2)-O(2)CR)(eta(1)-O(2)CR)H(2) (M = Mo and R = Ph, Bu(t); M = W and R = Bu(t)). One of the oxygen donors of the bidentate carboxylate ligand may be displaced by H(2)O to give rare examples of aqua-dihydride complexes, M(PMe(3))(3)(eta(1)-O(2)CR)(2)(OH(2))H(2), in which the coordinated water molecule is hydrogen-bonded to both carboxylate ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号