首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear resonance vibrations and stability of nonlinear orthotropic shells partially filled with a liquid and subjected to longitudinal and transverse periodic loading are studied. The equations of motion are derived with regard for the existence and nonlinear interaction of conjugate flexural modes of the shell. Stationary regimes for forced and parametric vibrations are found and analyzed for stability under the conditions of fundamental and subharmonic resonances. The amplitude–frequency characteristics of these regimes are constructed for various parameters of the system  相似文献   

2.
Secondary resonances of a slender, elastic, cantilevered beam subjected to a transverse harmonic load are investigated. The effects of nonlinear curvature, nonlinear inertia, viscous damping and static load are included. Cubic terms in the governing equations lead to subharmonic and superharmonic resonances of order three. The static displacement produced by the weight of the beam introduces quadratic terms in the governing equations, which cause subharmonic and superharmonic resonances of order two. Out-of-plane motion is possible in all of these secondary resonances when the principal moments of inertia of the beam cross section are approximately equal.  相似文献   

3.
Using the method of multiple scales, an extensive frequency response and subharmonic resonance analysis of the equations of motion governing the nonlinear flexural vibrations of piezoelectrically actuated microcantilevers is performed. Such comprehensive understanding of the nonlinear response and subharmonics analysis of these microcantilevers is, indeed, justified by the applications of piezoelectrically actuated microcantilevers that are increasingly becoming popular in many science and engineering areas including scanning force microscopy, biosensors, and microactuators. Along this line, the method of multiple scales is used to derive the 2× and 3× subharmonic resonances appearing in nonlinear flexural vibrations of a piezoelectrically actuated microcantilever. An experimental examination is performed in order to verify the analytical results. The analytical and experimental results yield the same system response for the fundamental frequency. In addition, the experimental results demonstrate the presence of subharmonic resonances that are supported by numerical simulations of the equations of motion. The experimental mode shapes of these subharmonic frequencies are also measured and compared with fundamental frequency.  相似文献   

4.
Pellicano  F.  Mastroddi  F. 《Nonlinear dynamics》1997,14(4):335-355
The nonlinear dynamics of a simply supported beam resting on a nonlinear spring bed with cubic stiffness is analyzed. The continuous differential operator describing the mathematical model of the system is discretized through the classical Galerkin procedure and its nonlinear dynamic behavior is investigated using the method of Normal Forms. This model can be regarded as a simple system describing the oscillations of flexural structures vibrating on nonlinear supports and then it can be considered as a simple investigation for the analysis of more complex systems of the same type. Indeed, the possibility of the model to exhibit actually interesting nonlinear phenomena (primary, superharmonic, subharmonic and internal resonances) has been shown in a range of feasibility of the physical parameters. The singular perturbation approach is used to study both the free and the forced oscillations; specifically two parameter families of stationary solutions are obtained for the forced oscillations.  相似文献   

5.
The fundamental and subharmonic resonances of a two degree-of-freedom oscillator with cubic stiffness nonlinearities and linear viscous damping are examined using a multiple-seales averaging analysis. The system is in a 1–1 internal resonance, i.e., it has two equal linearized eigenfrequencies, and it possesses nonlinear normal modes. For weak coupling stiffnesses the internal resonance gives rise to a Hamiltonian Pitchfork bifurcation of normal modes which in turn affects the topology of the fundamental and subharmonic resonance curves. It is shown that the number of resonance branches differs before and after the mode bifurcation, and that jump phenomena are possible between forced modes. Some of the steady state solutions were found to be very sensitive to damping: a whole branch of fundamental resonances was eliminated even for small amounts of viscous damping, and subharmonic steady state solutions were shifted by damping to higher frequencies. The analytical results are verified by a numerical integration of the equations of motion, and a discussion of the effects of the mode bifurcation on the dynamics of the system is given.  相似文献   

6.
IntroductionInrecentyears,withtheessentialadvantageoflightweightandhighrigidity ,sandwichplatesandshellshavebeenusedasanimportantpatternofstructuralelementsinaeronautical,astronauticalandnavalengineering .However,nonlinearproblemsforsandwichplatesandshellsareonlyinvestigatedbyafewbecauseofthedifficultiesofnonlinearmathematicalproblems.LiuRen_huaiandXuJia_chu[1,2 ]andothershavemadesomeinvestigationsinthisfield .Bifurcationofnonlinearvibrationforsandwichplateshasnotyetbeeninvestigated .Inthisp…  相似文献   

7.
We extend the asymptotic perturbation (AP) method to the studyof a linear partial differential equation with nonlinear boundaryconditions. A relief valve under the combined effects of static anddynamic loadings is considered with the following resonances between thenth linear mode and the external periodic excitation: primaryresonance, subharmonic resonance of order one-half or one-third,superharmonic resonance of order-two or order-three and combinationresonance. The AP method uses two different procedures for thesolutions: introducing an asymptotic temporal rescaling and balancing ofthe harmonic terms with a simple iteration. We obtain amplitude andphase modulation equations and determine external force-response andfrequency-response curves. Stability of steady-state motions is alsoinvestigated. Saddle-node bifurcations of cycles are observed and underappropriate conditions the performance of the relief valve may beunsatisfactory due to the presence of jumps and hysteresis effects inthe system response. Global analysis is used in order to exclude theexistence of modulated motion. The validity of the method is highlightedby comparing approximate solutions with results of the numericalintegration.  相似文献   

8.
Geometrically nonlinear dynamics of an axially accelerating beam is investigated numerically in this paper. Employing the Galerkin scheme, the equation of motion is reduced to a set of nonlinear ordinary differential equations with coupled terms. The linear part of this set of equations is then solved to determine the linear natural frequencies. The frequency of the axial acceleration is set to twice the first or second linear natural frequency (subharmonic resonance), and bifurcation diagrams of Poincaré maps are obtained via direct time integration and choosing the amplitude of the speed variations as a bifurcation parameter. The results are presented for four different values of the mean value of the axial speed, specifically in the form of time traces, phase-plane portraits, fast Fourier transforms (FFTs), and Poincaré maps.  相似文献   

9.
The aim of this work is to study the transmission of stress waves in an impulsively forced semi-infinite repetitive system of linear layers which are coupled by means of strongly nonlinear coupling elements. Only primary pulse transmission and reflection at each nonlinear element is considered. This permits the reduction of the problem to an infinite set of first-order strongly nonlinear ordinary differential equations. A subset of these equations is solved both analytically and numerically. For a system possessing clearance nonlinearities it is found that the primary transmitted pulse propagates to only a finite number of layers, and that further transmission of energy to additional layers can occur only through time-delayed secondary pulses or does not occur at all. Hence, clearance nonlinearities in a periodic layered system can lead to energy entrapment in the leading layers. An alternative continuum approximation methodology is also outlined which reduces the problem of primary pulse transmission to the solution of a single strongly nonlinear partial differential equation. The use of the continuum approximation for studying maximum primary pulse penetration in the system with clearance nonlinearities is discussed.  相似文献   

10.
Multi-frequency vibrations of a system of two isotropic circular plates interconnected by a visco-elastic layer that has non-linear characteristics are considered. The considered physical system should be of interest to many researches from mechanical and civil engineering. The first asymptotic approximation of the solutions describing stationary and no stationary behavior, in the regions around the two coupled resonances, is the principal result of the authors. A series of the amplitude-frequency and phase-frequency curves of the two frequency like vibration regimes are presented. That curves present the evolution of the first asymptotic approximation of solutions for different non-linear harmonics obtained by changing external excitation frequencies through discrete as well as continuous values. System of the partial differential equations of the transversal oscillations of the sandwich double circular plate system with visco-non-linear elastic layer, excited by external, distributed, along plate surfaces, excitation are derived and approximately solved for various initial conditions and external excitation properties. System of differential equations of the first order with respect to the amplitudes and the corresponding number of the phases in the first asymptotic averaged approximation are derived for different corresponding multi-frequency non-linear vibration regimes. These equations are analytically and numerically considered in the light of the stationary and no stationary resonant regimes, as well as the multi-non-linear free and forced mode mutual interactions, number of the resonant jumps.  相似文献   

11.
The bifurcation and chaos of a cable–beam coupled system under simultaneous internal and external resonances are investigated. The combined effects of the nonlinear term due to the cable’s geometric and coupled behavior between the modes of the beam and the cable are considered. The nonlinear partial-differential equations are derived by the Hamiltonian principle. The Galerkin method is applied to truncate the governing equation into a set of ordinary differential equations. The bifurcation diagrams in three separate loading cases, namely, excitation acting on the cable, on the beam and simultaneously on the beam and cable, are analyzed with changing forcing amplitude. Based on careful numerical simulations, bifurcations and possible chaotic motions are represented to reveal the combined effects of nonlinearities on the dynamics of the beam and the cable when they act as an overall structure.  相似文献   

12.
Higher harmonic resonances with wavenumber ratio of 1:2, 1:2:3 and so on are shown to take place in Rayleigh—Bénard convection under free—rigid boundary condition. Bifurcation diagrams for two-dimensional motion are obtained for the Prandtl number P = 7. The subharmonic instability is explained by a couple of amplitude equations obtained from weakly nonlinear stability theory. A straightforward extension of the coupled amplitude equations leads to a model which consists of n amplitude equations. The mechanism of mode selection is illustrated by numerical simulations of the model equations.  相似文献   

13.
The BEM is developed for nonlinear free and forced vibrations of circular plates with variable thickness undergoing large deflections. General boundary conditions are considered, which may be also nonlinear. The problem is formulated in terms of displacements. The solution is based on the concept of the analog equation, according to which the two coupled nonlinear differential equations with variable coefficients pertaining to the in-plane radial and transverse deformation are converted to two uncoupled linear ones of a substitute beam with unit axial and unit bending stiffness, respectively, under fictitious quasi-static load distributions. Numerical examples are presented which illustrate the method and demonstrate its accuracy.  相似文献   

14.
This article explores enrichment to the method of Multiple Scales, in some cases extending its applicability to periodic solutions of harmonically forced, strongly nonlinear systems. The enrichment follows from an introduced homotopy parameter in the system governing equation, which transitions it from linear to nonlinear behavior as the value varies from zero to one. This same parameter serves as a perturbation quantity in both the asymptotic expansion and the multiple time scales assumed solution form. Two prototypical nonlinear systems are explored. The first considered is a classical forced Duffing oscillator for which periodic solutions near primary resonance are analyzed, and their stability is assessed, as the strengths of the cubic term, the forcing, and a system scaling factor are increased. The second is a classical forced van der Pol oscillator for which quasiperiodic and subharmonic solutions are analyzed. For both systems, comparisons are made between solutions generated using (a) the enriched Multiple Scales approach, (b) the conventional Multiple Scales approach, and (c) numerical simulations. For the Duffing system, important qualitative and quantitative differences are noted between solutions predicted by the enriched and conventional Multiple Scales. For the van der Pol system, increased solution flexibility is noted with the enriched Multiple Scales approach, including the ability to seek subharmonic (and superharmonic) solutions not necessarily close to the linear natural frequency. In both nonlinear systems, comparisons to numerical simulations show strong agreement with results from the enriched technique, and for the Duffing case in particular, even when the system is strongly nonlinear.  相似文献   

15.
This paper investigates the nonlinear forced dynamics of an axially moving Timoshenko beam. Taking into account rotary inertia and shear deformation, the equations of motion are obtained through use of constitutive relations and Hamilton’s principle. The two coupled nonlinear partial differential equations are discretized into a set of nonlinear ordinary differential equations via Galerkin’s scheme. The set is solved by means of the pseudo-arclength continuation technique and direct time integration. Specifically, the frequency-response curves of the system in the subcritical regime are obtained via the pseudo-arclength continuation technique; the bifurcation diagrams of Poincaré maps are obtained by means of direct time integration of the discretized equations. The resonant response is examined, for the cases when the system possesses a three-to-one internal resonance and when not. Results are shown through time traces, phase-plane portraits, and fast Fourier transforms (FFTs). The results indicate that the system displays a wide variety of rich dynamics.  相似文献   

16.
This paper analyzes dynamical behavior of a simply supported Euler?CBernoulli beam with a time-varying mass on its surface. Though the system under consideration is linear, it exhibits dynamics similar to a nonlinear system behavior including internal resonances. The asymptotical solutions for the beam displacement has been found by combining the classical Galerkin method with the averaging method for equations in Banach spaces. The resonance conditions have been derived. It has been proposed a method for finding a number of possible resonances.Effect of the beam parameters on its dynamical behavior is investigated as well.  相似文献   

17.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

18.
Dwivedy  S. K.  Kar  R. C. 《Nonlinear dynamics》2003,31(1):49-72
In this paper the nonlinear response of a base-excited slender beam carrying an attached mass is investigated with 1:3:9 internal resonances for principal and combinationparametric resonances. Here the method of normal forms is used to reduce the second order nonlinear temporal differential equation of motion of the system to a set offirst order nonlinear differential equations which are used to find the fixed-point, periodic, quasi-periodic and chaotic responses of the system.Stability and bifurcation analysis of the responses are carried out and bifurcation sets are plotted. Many chaotic phenomena are reported in this paper.  相似文献   

19.
This paper investigates oscillations in a flexible rotor system with radial clearance between an outer ring of the bearing and a casing by experiments and numerical simulations. The mathematical model considers the collisions of the bearing with the casing. The following phenomena are found: (1) Nonlinear resonances of subharmonic, super-subharmonic and combination oscillation occur. (2) Self-excited oscillation of a forward whirling mode occurs in a wide range above the major critical speed. (3) Entrainment phenomena from self-excited oscillation to nonlinear forced oscillation occur at these nonlinear resonance ranges. Moreover, this study analyzes periodic solutions of the mathematical model by the Harmonic Balance Method (HBM). As the results, the nonlinear resonances of subharmonic oscillation and its entrainment phenomenon can be explained theoretically by investigating the stability of the periodic solutions. The influence of the static force and the bearing damping on these oscillation are also clarified.  相似文献   

20.
This work examines the nonlinear, parametrically excited dynamics of idler gearsets. The two gear tooth meshes provide two interacting parametric excitation sources and two possible tooth separations. The periodic steady state solutions are obtained using analytical and numerical approaches. Asymptotic perturbation analysis gives the solution branches and their stabilities near primary, secondary, and subharmonic resonances. The ratio of mesh stiffness variation to its mean value is the small parameter. The time of tooth separation is assumed to be a small fraction of the mesh period. With these stipulations, the nonsmooth separation function that determines contact loss and the variable mesh stiffness are reformulated into a form suitable for perturbation. Perturbation yields closed-form expressions that expose the impact of key parameters on the nonlinear response. The asymptotic analysis for this strongly nonlinear system compares well to separate harmonic balance/arclength continuation and numerical integration solutions. The expressions in terms of fundamental design quantities have natural practical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号