首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this article is to experimentally investigate the effect of different pore size distributions in bidisperse wicks upon the heat transfer performance in a LHP. Three bidisperse wicks and one monoporous wick were tested in a loop heat pipe. The pore size distributions of the bidisperse wicks were measured, and the results reflected the three different large/small pore size ratios. The experiments showed that the maximum heat load of the monoporous wick reached about 400 W; and the three bidisperse wicks showed improvements on the maximum heat load up to 570 W. For the monoporous wick, the evaporator heat transfer coefficients of 10 kW/m2 K and total thermal resistance of 0.19°C/W were achieved at a high heat load of 400 W. For the better bidisperse wick, the evaporator heat transfer coefficients could attain about 23 kW/m2 K and total thermal resistance of 0.13°C/W. The results also indicated that a smaller cluster size in a bidisperse structure created a small pore size ratio. It was also found that the bidisperse wick with smaller clusters had a better enhancement in terms of the evaporator heat transfer coefficient.  相似文献   

2.
The purpose of this study is to investigate the effects of various bimodal pore size distributions of biporous wicks for a loop heat pipe (LHP). The study was conducted following a statistical method using a two-level factorial plan involving three variables (particle size of pore former:74–88 and 125–149 μm Na2CO3, pore former content:20% by volume and 25% by volume, sintering temperature:700 and 750°C). Finally, the heat transport capability of the LHP between monoporous wicks and biporous wicks has been investigated. Experimental results show that, at the sink temperature of 10°C and the allowable evaporator temperature of 80°C, the heat transfer capacity of the better biporous wick achieved 200 W and the total thermal resistance was 0.31°C/W. The performance is enhanced about 60%, compared to a monoporous wick for 125 W and 0.53°C/W. Therefore, LHPs with biporous wicks are very attractive for high heat flux applications in the future.  相似文献   

3.
This paper presents the results of experimental and numerical studies of heat transfer and swirling pulsating flows in short low-temperature heat pipes whose vapor channels have the form of a conical nozzle. It has been found that as the evaporator of the heat pipe is heated, pressure pulsations occur in the vapor channel starting at a certain threshold value of the heat power, which is due to the start of boiling in the evaporator. The frequency of the pulsations has been measured, and their dependence on the superheat of the evaporator has been determined. It has been found that in heat pipes with a conical vapor channel, pulsations occur at lower evaporator superheats and the pulsation frequency is greater than in heat pipes of the same size with a standard cylindrical vapor channel. It has been shown that the curve of the heat-transfer coefficient versus thermal load on the evaporator has an inflection corresponding to the start of boiling in the capillary porous evaporator of the heat pipe.  相似文献   

4.
Since heat flux increases sharply yet cooling space in microelectronic and chemical products gradually decreases, a micro heat pipe has been an ideal device for heat transfer for high heat-flux products, and its performance depends largely on its capillary limit. This study proposed an integrated utilization of the advantages of lower backflow resistance to working fluid in trapezium-grooved-wick micro heat pipes and greater capillary force in sintered-wick micro heat pipes; first the factors that are crucial to both types’ heat transfer performances were analyzed, and then mathematical modeling was built for capillary limit of a micro heat pipe with the compound structure of sintered wick on trapezium-grooved substrate, and finally heat transfer limits for micro heat pipes with a trapezium-grooved wick, a sintered wick and with a compound structure were tested through experiments. Both the theoretical analysis and experimental results show that for a micro heat pipe with proposed compound structure, its capillary limit is superior to that of a micro heat pipe with a simplex sintered wick or trapezium-grooved wick.  相似文献   

5.
An experimental study was performed to understand the nucleate boiling heat transfer of water–CuO nanoparticles suspension (nanofluids) at different operating pressures and different nanoparticle mass concentrations. The experimental apparatus is a miniature flat heat pipe (MFHP) with micro-grooved heat transfer surface of its evaporator. The experimental results indicate that the operating pressure has great influence on the nucleate boiling characteristics in the MFHP evaporator. The heat transfer coefficient and the critical heat flux (CHF) of nanofluids increase greatly with decreasing pressure as compared with those of water. The heat transfer coefficient and the CHF of nanofluids can increase about 25% and 50%, respectively, at atmospheric pressure whereas about 100% and 150%, respectively, at the pressure of 7.4 kPa. Nanoparticle mass concentration also has significant influence on the boiling heat transfer and the CHF of nanofluids. The heat transfer coefficient and the CHF increase slowly with the increase of the nanoparticle mass concentration at low concentration conditions. However, when the nanoparticle mass concentration is over 1.0 wt%, the CHF enhancement is close to a constant number and the heat transfer coefficient deteriorates. There exists an optimum mass concentration for nanofluids which corresponds to the maximum heat transfer enhancement and this optimum mass concentration is 1.0 wt% at all test pressures. The experiment confirmed that the boiling heat transfer characteristics of the MFHP evaporator can evidently be strengthened by using water/CuO nanofluids.  相似文献   

6.
Loop heat pipes are heat transfer devices whose operating principle is based on the evaporation and condensation of a working fluid, and which use the capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (mLHP) with flat evaporator and fin-and-tube type condenser. The loop is made of pure copper with stainless mesh wick and methanol as the working fluid. Detailed study is conducted on the start-up reliability of the mLHP at high as well as low heat loads. During the testing of mLHP under step power cycles, the thermal response presented by the loop to achieve steady state is very short. At low heat loads, temperature oscillations are observed throughout the loop. The amplitudes and frequencies of these fluctuations are large at evaporator wall and evaporator inlet. It is expected that the extent and nature of the oscillations occurrence is dependent on the thermal and hydrodynamic conditions inside the compensation chamber. The thermal resistance of the mLHP lies between 0.29 and 3.2°C/W. The effects of different liquid charging ratios and the tilt angles to the start-up and the temperature oscillation are studied in detail.  相似文献   

7.
In order to optimize the structure of a CPL evaporator and enhance heat transfer, a mathematical and physical model is developed to analyze the flow and heat transfer in the porous wick of the evaporator, whose calculation domain is divided into two parts: vapor-saturated region and liquid-saturated region. The characteristics of flow and heat transfer in the porous wick of a CPL evaporator have been numerically studied according to the field synergy principle. The influences of geometrical structures and heat flux on heat transfer enhancement are analyzed and illustrated by the figures in the present paper.  相似文献   

8.
To develop a highly stable microchannel heat sink for boiling heat transfer, three types of diverging microchannels (Type 1, Type 2 and Type 3) were designed to experimentally investigate the effect of different distributions of artificial nucleation sites (ANS) on the enhancement of flow boiling heat transfer, in 10 parallel diverging microchannels with a mean hydraulic diameter of 120 μm. Water was used as the working fluid with mass flux, based on the mean cross section area, ranging from 99 to 297 kg/m2 s. The Type-1 system did not contain any ANS; the Type-2 system contained ANS distributed uniformly along the downstream half of the channel; and the Type-3 system contained ANS distributed uniformly along the entire channel. The ANS are laser-etched pits on the bottom wall of the channel and have a mouth diameter of approximately 20-22 μm, as indicted by the heterogeneous nucleation theory. The results of the present study reveal that the presence of ANS for flow boiling in parallel diverging microchannels significantly reduces the wall superheat and enhances the boiling heat transfer performance. The Type-3 system shows the best boiling heat transfer performance.  相似文献   

9.
New experimental results present the effects of low-frequency vibrations in a horizontal heat pipe. The temperature difference between the evaporator and condenser of the heat pipe was measured under different heat transfer rates, filling ratios and frequencies. The low-frequency vibrations imposed a significant effect on the thermal performance as the best performance was achieved with the thermal resistance 0.05 K/W in the frequency 25 Hz.  相似文献   

10.
Direct contact heat transfer between water and a heat transfer oil was investigated under non-boiling conditions in co-current turbulent flow through a horizontal concentric annulus. The ratio of the inner pipe diameter to the outer pipe diameter (aspect ratio) κ = 0.730−0.816; total liquid velocity (mixture velocity) VT = 0.42−1.1 m/s; inlet oil temperature Toi = 38−94°C; oil volume fraction in the flowing mixture φo = 0.25−0.75 were varied and their effects on the overall volumetric heat transfer coefficient Uv were determined at constant interfacial tension of 48 dynes/cm.

It was found that, in each concentric pipe set, the overall volumetric heat transfer coefficient increased with increasing dispersed phase volume fraction at each constant mixture velocity and reached a maximum at around φo = φw ≈ 0.5. The maximum Uv values increased with increasing total liquid velocity and decreasing aspect ratio of the annulus. The volumetric heat transfer coefficient was also found to increase with increasing inlet oil temperature and increasing total liquid velocity but to decrease with length along the test section keeping all other parameters constant. Empirical expressions for the volumetric heat transfer coefficient were obtained within the ranges of the experimental parameters.  相似文献   


11.
Several heat pipes were designed and manufactured to study the effect of the working fluids, container materials, and the wick structures on the heat transfer mechanism of the heat pipes. Also, the effect of the number of wick layers on the effective thermal conductivity and the heat transfer characteristics of the heat pipes have been investigated. It was found that the flow behavior of the working fluid depends on the wicking structures and the number of wick layers. The heat transfer characteristics and the effective thermal conductivity are related directly to the flow behavior. Increasing the number of wick layers (up to 16 layers) increases the heat flux with smaller temperature differences. The flattening phenomena of the thermal resistance was observed after 16 wicks layers due to the entrainment limit.  相似文献   

12.
 Investigation has been carried out on the thermal performance of sintered miniature heat pipes with 3 mm outer diameter. In the theoretical analysis, the influence of wick structure parameters is determined by using the theory of capillary limitation. As a result, the degree of importance is found to be as follows: porosity, powder diameter and thickness of wick structure. In the experiments, heat pipes with sintered dendritic copper powder wicks were fabricated and tested. The maximum heat transfer rate is about 13 W with an effective heat pipe length of 20 cm. By adopting the formulae developed for both sintered spherical powder and fiber and adjusting their proportion, the agreement between experimental results and prediction is found to be quite good in the tested operation temperature range. Received on 26 February 2001  相似文献   

13.
An inverse approach is performed to characterize the thermal behaviour of an axially grooved heat pipe, in steady state, for various operating conditions. For this purpose, an experimental set up, as well as a network conduction model, are developed to simulate the heat transfer in the wall at the evaporator section. The minimization of an objective function, taking into account the discrepancy between measured temperatures and computed ones, allows then the estimation of a heat transfer coefficient as well as the drying out front positions for all the axial grooves. Hence, at the burnout point, the significant temperature increase in the evaporator extremity is considered to be a direct consequence of the restriction of the evaporative zone. Therefore, the distribution of liquid phase in the capillary structure of the heat pipe can be obtained through the analysis of the measured temperature gradient in the evaporator section where the dry out front was expected to occur. Furthermore, the dry out front expansion can be observed when the input heat load is increased or when the adiabatic temperature is decreased. Introducing an adverse tilt angle also shows the effect of the puddle.  相似文献   

14.
A physical model was developed to study heat transfer in turbulent dispersed flow at very high vapor quality in a vertical pipe by numerically solving the coupling governing differential equations for both phases. Major heat transfer mechanisms included in the model were the thermal nonequilibrium effects, droplet vaporization, droplet deposition on the duct wall and thermal radiative transfer. The predicted results indicated that vapor superheating is dominant for the cases with high wall superheat, otherwise droplet vaporization dominates the energy transport processes. Heat transfer during the droplet-wall interaction only exists at low wall superheat but in small amounts.  相似文献   

15.
Two phase flow and heat transfer characteristics of a separate-type heat pipe have been studied experimentally and theoretically. The experimental apparatus have the same geometry for the evaporator and the condenser which consist of 5-tube-banks, with working temperature ranges of 80–125°C. The experimental working fluid is dual-distilled water with corrosion-resistant agents. Heat transfer coefficients for boiling and condensation along with heat flux and working temperature are measured at different filling ratio. According to the results of the experiments, the optimized filling ratio ranges from 16 to 36%. Fitted correlations of average heat transfer coefficients of the evaporator and Nusselt numbers of the condenser at the proposed filling ratio are obtained. Two phase flow characteristics of the evaporator and the condenser as well as their influence on heat transfer are described on the basis of simplified analysis. Reasons for the pulse-boiling process remain to be studied.  相似文献   

16.
Generally, it is an economic advantage to operate a heat pipe in a condition where the ratio of heat flow rate, Q, to mass, m, is a maximum. It is shown that a maximum of the function Q/m may be obtained if the ratio between the evaporator and the condenser lengths is optimum. To achieve this optimization, all the other geometrical elements of the heat pipe and the heat transfer coefficients are considered constants, the only variables being the two lengths.  相似文献   

17.
Experiments were conducted using porous ceramic inserts to enhance the radiative heat transfer from natural gas flames in a straight-through radiant tube burner. The performance of the radiant tube burner with partially stabilized zirconia and silicon carbide inserts is compared to a baseline case of no inserts at three levels of combustion air preheat. Spectral intensities, temperatures within the radiant tube burner, tube wall temperatures, and exhaust temperatures were measured to determine the effectiveness of the enhanced heat transfer due to the inserts. Exhaust emission constituents were also measured to determine the effect that the inserts have on exhaust products. NOx emissions are reduced by up to 30% with the inserts. The silicon carbide inserts have higher spectral intensities and total radiative energy transfer than partially stabilized zirconia inserts. Both inserts have enhanced radiant heat transfer compared to the no-insert configuration, with the radiative enhancement due to inserts as great as five times that of the no-insert configuration. The net result is increased tube wall temperatures and decreased exhaust temperatures with the ceramic inserts.  相似文献   

18.
A mathematic model is developed to describe heat and mass transfer with phase change in the porous wick of evaporator of capillary pumped loop (CPL). This model with six field variables, including temperature, liquid content, pressure, liquid velocity, vapor velocity and phase-change rate, is closed mathematically with additional pressure relationships introduced. The present model is suitable to the numerical computation, as the established equations become comparatively easy to solve, which is applied to CPL evaporator. The numerical results are obtained and the parameter effects on evaporator are discussed. The study demonstrates that instead of an evaporative interface, there exists an unsaturated two-phase zone between the vapor-saturated zone and the liquid-saturated zone in the wick of CPL evaporator.  相似文献   

19.
The aim of this study is to investigate the heat-transfer characteristics of a top heat mode closed-loop oscillating heat pipe with a check valve (THMCLOHP/CV). Water and ethanol are used as the working fluids at various working temperatures. The results show that the specific heat flux increases significantly when the working temperature increases and when the aspect ratio of the evaporator length L e to the pipe diameter d decreases for the pipe filling ratio varying from 30 to 80%. The maximum specific heat flux equal to 786.34 W/m2 is reached with the use of ethanol as the working fluid at L e /d = 25, angle of inclination to the horizontal axis 90°, and filling ratio of 80%.  相似文献   

20.
The performance of heat pipe solar collector is investigated theoretically and experimentally. The system employs wick-assisted heat pipe for the heat transfer from the absorber (evaporator) to a heat exchanger (condenser). The heat pipe is made with a copper tube and the evaporator section is finned with aluminium plate. Theoretical model predicts the outlet water from heat exchanger, heat pipe temperature and also the thermal efficiency of solar collector. The results are compared with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号