首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We study solutions of the focusing energy-critical nonlinear heat equation ut=Δu?|u|2u in R4. We show that solutions emanating from initial data with energy and H˙1-norm below those of the stationary solution W are global and decay to zero, via the “concentration-compactness plus rigidity” strategy of Kenig–Merle [33], [34]. First, global such solutions are shown to dissipate to zero, using a refinement of the small data theory and the L2-dissipation relation. Finite-time blow-up is then ruled out using the backwards-uniqueness of Escauriaza–Seregin–Sverak [17], [18] in an argument similar to that of Kenig–Koch [32] for the Navier–Stokes equations.  相似文献   

2.
3.
For an oriented 2-dimensional manifold Σ of genus g with n boundary components, the space Cπ1(Σ)/[Cπ1(Σ),Cπ1(Σ)] carries the Goldman–Turaev Lie bialgebra structure defined in terms of intersections and self-intersections of curves. Its associated graded Lie bialgebra (under the natural filtration) is described by cyclic words in H1(Σ) and carries the structure of a necklace Schedler Lie bialgebra. The isomorphism between these two structures in genus zero has been established in [13] using Kontsevich integrals and in [2] using solutions of the Kashiwara–Vergne problem.In this note, we give an elementary proof of this isomorphism over C. It uses the Knizhnik–Zamolodchikov connection on C\{z1,zn}. We show that the isomorphism naturally depends on the complex structure on the surface. The proof of the isomorphism for Lie brackets is a version of the classical result by Hitchin [9]. Surprisingly, it turns out that a similar proof applies to cobrackets.Furthermore, we show that the formality isomorphism constructed in this note coincides with the one defined in [2] if one uses the solution of the Kashiwara–Vergne problem corresponding to the Knizhnik–Zamolodchikov associator.  相似文献   

4.
We investigate blow-up properties for the initial-boundary value problem of a Keller–Segel model with consumption of chemoattractant when the spatial dimension is three. Through a kinetic reformulation of the Keller–Segel system, we first derive some higher-order estimates and obtain certain blow-up criteria for the local classical solutions. These blow-up criteria generalize the results in [4], [5] from the whole space R3 to the case of bounded smooth domain Ω?R3. Lower global blow-up estimate on 6n6L(Ω) is also obtained based on our higher-order estimates. Moreover, we prove local non-degeneracy for blow-up points.  相似文献   

5.
In this paper, we study the irreducible representation of PSL(2,R) in PSL(5,R). This action preserves a quadratic form with signature (2,3). Thus, it acts conformally on the 3-dimensional Einstein universe Ein1,2. We describe the orbits induced in Ein1,2 and its complement in RP4. This work completes the study in [2], and is one element of the classification of cohomogeneity one actions on Ein1,2[5].  相似文献   

6.
We obtain Dini type estimates for a class of concave fully nonlinear nonlocal elliptic equations of order σ(0,2) with rough and non-symmetric kernels. The proof is based on a novel application of Campanato's approach and a refined Cσ+α estimate in [9].  相似文献   

7.
We consider the space-time behavior of the two dimensional Navier–Stokes flow. Introducing some qualitative structure of initial data, we succeed to derive the first order asymptotic expansion of the Navier–Stokes flow without moment condition on initial data in L1(R2)Lσ2(R2). Moreover, we characterize the necessary and sufficient condition for the rapid energy decay 6u(t)62=o(t?1) as t motivated by Miyakawa–Schonbek [21]. By weighted estimated in Hardy spaces, we discuss the possibility of the second order asymptotic expansion of the Navier–Stokes flow assuming the first order moment condition on initial data. Moreover, observing that the Navier–Stokes flow u(t) lies in the Hardy space H1(R2) for t>0, we consider the asymptotic expansions in terms of Hardy-norm. Finally we consider the rapid time decay 6u(t)62=o(t?32) as t with cyclic symmetry introduced by Brandolese [2].  相似文献   

8.
We provide a model where u(κ)<2κ for a supercompact cardinal κ. [10] provides a sketch of how to obtain such a model by modifying the construction in [6]. We provide here a complete proof using a different modification of [6] and further study the values of other natural generalizations of classical cardinal characteristics in our model. For this purpose we generalize some standard facts that hold in the countable case as well as some classical forcing notions and their properties.  相似文献   

9.
We investigate the regularity of random attractors for the non-autonomous non-local fractional stochastic reaction–diffusion equations in Hs(Rn) with s(0,1). We prove the existence and uniqueness of the tempered random attractor that is compact in Hs(Rn) and attracts all tempered random subsets of L2(Rn) with respect to the norm of Hs(Rn). The main difficulty is to show the pullback asymptotic compactness of solutions in Hs(Rn) due to the noncompactness of Sobolev embeddings on unbounded domains and the almost sure nondifferentiability of the sample paths of the Wiener process. We establish such compactness by the ideas of uniform tail-estimates and the spectral decomposition of solutions in bounded domains.  相似文献   

10.
11.
We prove that the realization Ap in Lp(RN),1<p<, of the elliptic operator A=(1+|x|α)Δ+b|x|α?1x|x|???c|x|β with domain D(Ap)={uW2,p(RN)|AuLp(RN)} generates a strongly continuous analytic semigroup T(?) provided that α>2,β>α?2 and any constants bR and c>0. This generalizes the recent results in [4] and in [16]. Moreover we show that T(?) is consistent, immediately compact and ultracontractive.  相似文献   

12.
In this paper we investigate the orbital stability of solitary waves to the (generalized) Kawahara equation (gKW) which is a fifth order dispersive equation. For some values of the power of the nonlinearity, we prove the orbital stability in the energy space H2(R) of two branches of even solitary waves of gKW by combining the well-known spectral method introduced by Benjamin [4] with continuity arguments. We construct the first family of even solitons by applying the implicit function theorem in the neighborhood of the explicit solitons of gKW found by Dey et al. [9]. The second family consists of even traveling waves with low speeds. They are solutions of a constraint minimization problem on the line and rescaling of perturbations of the soliton of gKdV with speed 1.  相似文献   

13.
We prove mixed Lp(Lq)-estimates, with p,q(1,), for higher-order elliptic and parabolic equations on the half space R+d+1 with general boundary conditions which satisfy the Lopatinskii–Shapiro condition. We assume that the elliptic operators A have leading coefficients which are in the class of vanishing mean oscillations both in the time variable and the space variable. In the proof, we apply and extend the techniques developed by Krylov [24] as well as Dong and Kim in [13] to produce mean oscillation estimates for equations on the half space with general boundary conditions.  相似文献   

14.
By using the infinitesimal methods due to Bloch, Green, and Griffiths in [1], [4], we construct an infinitesimal form of the regulator map and verify that its kernel is ΩC/Q1, which suggests that Question 1.1 seems reasonable at the infinitesimal level.  相似文献   

15.
We derive trace formulas for a pair of self-adjoint operators H+V and H under the assumption that (H?i)?1V is in a Schatten class. This extends the trace formulas of [8], where V alone is assumed to be in a Schatten class. Our trace formulas apply, in particular, in the setting of differential operators and are based on Taylor-like approximations of operator functions. This significantly improves non-Taylor based trace formulas of [10].  相似文献   

16.
We study the partial regularity problem of the incompressible Navier–Stokes equations. A reverse Hölder inequality of velocity gradient with increasing support is obtained under the condition that a scaled functional corresponding the local kinetic energy is uniformly bounded. As an application, we give a new bound for the Hausdorff dimension and the Minkowski dimension of singular set when weak solutions v belong to L(0,T;L3,w(R3)) where L3,w(R3) denotes the standard weak Lebesgue space.  相似文献   

17.
Let Ω?R2 be a bounded simply-connected domain. The Eikonal equation |?u|=1 for a function u:Ω?R2R has very little regularity, examples with singularities of the gradient existing on a set of positive H1 measure are trivial to construct. With the mild additional condition of two vanishing entropies we show ?u is locally Lipschitz outside a locally finite set. Our condition is motivated by a well known problem in Calculus of Variations known as the Aviles–Giga problem. The two entropies we consider were introduced by Jin, Kohn [26], Ambrosio, DeLellis, Mantegazza [2] to study the Γ-limit of the Aviles–Giga functional. Formally if u satisfies the Eikonal equation and if
(1)??(Σ?e1e2(?u))=0 and ??(Σ??1?2(?u))=0 distributionally in Ω,
where Σ?e1e2 and Σ??1?2 are the entropies introduced by Jin, Kohn [26], and Ambrosio, DeLellis, Mantegazza [2], then ?u is locally Lipschitz continuous outside a locally finite set.Condition (1) is motivated by the zero energy states of the Aviles–Giga functional. The zero energy states of the Aviles–Giga functional have been characterized by Jabin, Otto, Perthame [25]. Among other results they showed that if limn?I?n(un)=0 for some sequence unW02,2(Ω) and u=limn?un then ?u is Lipschitz continuous outside a finite set. This is essentially a corollary to their theorem that if u is a solution to the Eikonal equation |?u|=1 a.e. and if for every “entropy” Φ (in the sense of [18], Definition 1) function u satisfies ??[Φ(?u)]=0 distributionally in Ω then ?u is locally Lipschitz continuous outside a locally finite set. In this paper we generalize this result in that we require only two entropies to vanish.The method of proof is to transform any solution of the Eikonal equation satisfying (1) into a differential inclusion DFK where K?M2×2 is a connected compact set of matrices without Rank-1 connections. Equivalently this differential inclusion can be written as a constrained non-linear Beltrami equation. The set K is also non-elliptic in the sense of Sverak [32]. By use of this transformation and by utilizing ideas from the work on regularity of solutions of the Eikonal equation in fractional Sobolev space by Ignat [23], DeLellis, Ignat [15] as well as methods of Sverak [32], regularity is established.  相似文献   

18.
We extend the linear program empirical quadrature procedure proposed in [9] and subsequently [3] to the case in which the functions to be integrated are associated with a parametric manifold. We pose a discretized linear semi-infinite program: we minimize as objective the sum of the (positive) quadrature weights, an ?1 norm that yields sparse solutions and furthermore ensures stability; we require as inequality constraints that the integrals of J functions sampled from the parametric manifold are evaluated to accuracy δ¯. We provide an a priori error estimate and numerical results that demonstrate that under suitable regularity conditions, the integral of any function from the parametric manifold is evaluated by the empirical quadrature rule to accuracy δ¯ as J. We present two numerical examples: an inverse Laplace transform; reduced-basis treatment of a nonlinear partial differential equation.  相似文献   

19.
The purpose of this note is to show a new series of examples of homogeneous ideals I in K[x,y,z,w] for which the containment I(3)?I2 fails. These ideals are supported on certain arrangements of lines in P3, which resemble Fermat configurations of points in P2, see [14]. All examples exhibiting the failure of the containment I(3)?I2 constructed so far have been supported on points or cones over configurations of points. Apart from providing new counterexamples, these ideals seem quite interesting on their own.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号