首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the gas-phase reaction of Cl atoms with CF3I have been studied relative to the reaction of Cl atoms with CH4 over the temperature range 271–363 K. Using k(Cl + CH4) = 9.6 × 10?12 exp(?2680/RT) cm3 molecule?1 s?1, we derive k(Cl + CF3I) = 6.25 × 10?11 exp(?2970/RT) in which Ea has units of cal mol?1. CF3 radicals are produced from the reaction of Cl with CF3I in a yield which was indistinguishable from 100%. Other relative rate constant ratios measured at 296 K during these experiments were k(Cl + C2F5I)/k(Cl + CF3I) = 11.0 ± 0.6 and k(Cl + C2F5I)/k(Cl + C2H5Cl) = 0.49 ± 0.02. The reaction of CF3 radicals with Cl2 was studied relative to that with O2 at pressures from 4 to 700 torr of N2 diluent. By using the published absolute rate constants for k(CF3 + O2) at 1–10 torr to calibrate the pressure dependence of these relative rate constants, values of the low- and high-pressure limiting rate constants have been determined at 296 K using a Troe expression: k0(CF3 + O2) = (4.8 ± 1.2) × 10?29 cm6 molecule?2 s?1; k(CF3 + O2) = (3.95 ± 0.25) × 10?12 cm3 molecule?1 s?1; Fc = 0.46. The value of the rate constant k(CF3 + Cl2) was determined to be (3.5 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 296 K. The reaction of Cl atoms with CF3I is a convenient way to prepare CF3 radicals for laboratory study. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Rate constants have been determined for the reactions of Cl atoms with the halogenated ethers CF3CH2OCHF2, CF3CHClOCHF2, and CF3CH2OCClF2 using a relative‐rate technique. Chlorine atoms were generated by continuous photolysis of Cl2 in a mixture containing the ether and CD4. Changes in the concentrations of these two species were measured via changes in their infrared absorption spectra observed with a Fourier transform infrared (FTIR) spectrometer. Relative‐rate constants were converted to absolute values using the previously measured rate constants for the reaction, Cl + CD4 → DCl + CD3. Experiments were carried out at 295, 323, and 363 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature:Cl + CF3CH2OCHF2: k = (5.15 ± 0.7) × 10−12 exp(−1830 ± 410 K/T) cm3 molecule−1 s−1 Cl + CF3CHClOCHF2: k = (1.6 ± 0.2) × 10−11 exp(−2450 ± 250 K/T) cm3 molecule−1 s−1 Cl + CF3CH2OCClF2: k = (9.6 ± 0.4) × 10−12 exp(−2390 ± 190 K/T) cm3 molecule−1 s−1 The results are compared with those obtained previously for the reactions of Cl atoms with other halogenated methyl ethyl ethers. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 165–172, 2001  相似文献   

3.
The rate coefficients for the removal of Cl atoms by reaction with three HCFCs, CF3CHCl2 (HCFC-123), CF3CHFCl (HCFC-124), and CH3CFCl2 (HCFC 141b), were measured as a function of temperature between 276 and 397 K. CH3CF2Cl (HCFC-142b) was studied only at 298 K. The Arrhenius expressions obtained are: k1 = (3.94 ± 0.84)× 10?12 exp[?(1740 ± 100)/T] cm3 molecule?1 s?1 for CF3CHCl2 (HCFC 123); k2 = (1.16 ± 0.41) × 10?12 exp[?(1800 ± 150)/T] cm3 molecule?1 s?1 for CF3CHFCl (HCFC 124); and k3 = (1.6 ± 1.1) × 10?12 exp[?(1800 ± 500)/T] cm3 molecule?1 s?1 for CH3CFCl2 (HCFC 141b). In case of HCFC 141b, non-Arrhenius behavior was observed at temperatures above ca. 350 K and is attributed to the thermal decomposition of CH2CFCl2 product into Cl + CH2CFCl. In case of HCFC-142b, only an upper limit for the 298 K value of the rate coefficient was obtained. The atmospheric significance of these results are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
The branched chain reaction between CH2F2 and F2 is studied in a miniature tubular reactor having a diameter of 1.1 mm. The gases at the end of the tube expand into a low-pressure chamber and are analyzed by molecular beam detection. The branching intermediate CF2 is detected directly at low ionization energies. An approximate quantitative reaction model for the fluorination of CH2F2 is proposed and discussed. The influence of the unknown rate constants in this scheme on the course of the reaction is examined. For the most reasonable set of rate constants the unknown rate constant for the branching reaction CF2 + F2 → CF3 + F at 550 K is found to be log k = 10.7 [cm3/mol·s].  相似文献   

5.
Rate constant ratios, kd/kc, for the disproportionation/combination reaction at a temperature of 295 ± 2 K, have been measured as 0.034 ± 0.009 for the collision between CF3CH2CF2 + CF3 radicals and as 0.075 ± 0.019 for CF3CH2CF2 + CF3CH2CF2 radicals. The effect of the two fluorine substituents on the rate constant ratio is compared to previous kd/kcs with CF3CH2CH2, CF3CH2CHCl, and CF3CH2CHCF3 radicals. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet: 31: 237–243, 1999  相似文献   

6.
A variety of relative and absolute techniques have been used to measure the reactivity of fluorine atoms with a series of halogenated organic compounds and CO. The following rate constants were derived, in units of cm3 molecule?1 s?1: CH3F, (3.7 ± 0.8) × 10?11, CH3Cl, (3.3 ± 0.7) × 10?11; CH3Br, (3.0 ± 0.7) × 10?11; CF2H2, (4.3 ± 0.9) × 10?12; CO, (5.5 ± 1.0) × 10?13 (in 700 torr total pressure of N2 diluent); CF3H, (1.4 ± 0.4) × 10?13; CF3CCl2H (HCFC-123), (1.2 ± 0.4) × 10?12; CF3CFH2 (HFC-134a), (1.3 ± 0.3) × 10?12, CHF2CHF2 (HFC-134), (1.0 ± 0.3) × 10?12; CF2ClCH3 (HCFC-42b), (3.9 ± 0.9) × 10?12, CF2HCH3 (HFC-152a), (1.7 ± 0.4) × 10?11; and CF3CF2H (HFC-125), (3.5 ± 0.8) × 10?13. Quoted errors are statistical uncertainties (2σ). For rate constants derived using relative rate techniques, an additional uncertainty has been added to account for potential systematic errors in the reference rate constants used. Experiments were performed at 295 ± 2 K. Results are discussed with respect to the previous literature data and to the interpretation of laboratory studies of the atmospheric chemistry of HCFCs and HFCs. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Summary Pulsed laser photolysis with resonance fluorescence monitoring of OH radicals was applied at T = 300±2 K to obtain the rate constants of k1= (3.38±0.60)x10-12, k2= (2.52±0.44)x10-13and k3 = (1.06±0.30)x10-13cm3molecule-1s-1with 2σprecision given for the overall reactions OH + CH3CH2OH (1), OH + CF2HCH2OH (2) and OH + CF3CH2OH (3), respectively. k2is the first direct kinetic data for the reaction of OH radicals with CF2HCH2OH reported in the literature.</o:p>  相似文献   

8.
The rate constants for the reactions of OH radicals with CH3OCF2CF3, CH3OCF2CF2CF3, and CH3OCF(CF3)2 have been measured over the temperature range 250–430 K. Kinetic measurements have been carried out using the flash photolysis, laser photolysis, and discharge flow methods combined respectively with the laser induced fluorescence technique. The influence of impurities in the samples was investigated by using gas‐chromatography. The following Arrhenius expressions were determined: k(CH3OCF2CF3) = (1.90) × 10−12 exp[−(1510 ± 120)/T], k(CH3OCF2CF2CF3) = (2.06) × 10−12 exp[−(1540 ± 80)/T], and k(CH3OCF(CF3)2) = (1.94) × 10−12 exp[−(1450 ± 70)/T] cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 846–853, 1999  相似文献   

9.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

10.
Disproportionation/combination rate constant ratios, kd/kc, for the reactive collision between CF3CH2CHX + CF3 radicals and between CF3CH2CHX + CF3CH2CHX radicals have been measured for X = CF3. The kd/kc = 0.066 ± 0.013 when H is transferred to the CF3 radical and 0.125 ± 0.025 for H transfer to the CF3CH2CHCF3 radical. Comparison of these results with previous work shows that X = CF3 increases the kc/kc' s relative to X = Cl or H. The effect of the CF3 substituent on the disproportionation rate is discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The kinetics of the self-reactions of HO2, CF3CFHO2, and CF3O2 radicals and the cross reactions of HO2 with FO2, HO2 with CF3CFHO2, and HO2 with CF3O2 radicals, were studied by pulse radiolysis combined with time resolved UV absorption spectroscopy at 295 K. The rate constants for these reactions were obtained by computer simulation of absorption transients monitored at 220, 230, and 240 nm. The following rate constants were obtained at 295 K and 1000 mbar total pressure of SF6 (unit: 10−12 cm3 molecule−1 s−1): k(HO2+HO2)=3.5±1.0, k(CF3CFHO2+CF3CFHO2)=3.5±0.8, k(CF3O2+CF3O2)=2.25±0.30, k(HO2+FO2)=9±4, k(CF3CFHO2+HO2)=5.0±1.5, and k(CF3O2+HO2)=4.0±2.0. In addition, the decomposition rate of CF3CFHO radicals was estimated to be (0.2–2)×103 s−1 in 1000 mbar of SF6. Results are discussed in the context of the atmospheric chemistry of hydrofluorocarbons. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
A fast-flow apparatus with mass spectrometric detection was used to study the system F + CHFO between 2 and 3.5 mbar total pressure. The rate constant of the primary reaction was evaluated directly to yield at 298 K k(1) = (8.8 ± 1.4) * 10?13 cm3 * molecule?1 * s?1. Numerical modelling was used to determine the rate constant at 298 K of the subsequent reaction CFO + CFO → CF2O + CO: k(2) = (4.9 ± 2.0) * 10?11 cm3 * molecule?1 * s?1. The possible occurrences of secondary reactions, CFO + F + M → CF2O + M, and CFO + F2 → CF2O + F, can be excluded under the present conditions. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Rate constant ratios, kd/kc for the disproportionation/combination reaction have been measured as 0.07 ± 0.02 when an H is removed from the CH2 position of the CF3CH2CHCH3 radical and as 0.24 ± 0.03 when the H is removed from the CH3 position in the reaction with the CF3 radical. For the self‐reaction between two CF3CH2CHCH3 radicals, kd/kc has been measured as 0.27 ± 0.03 when the H is removed from the CH2 position and as 0.47 ± 0.04 when the H is removed from the CH3 position. The branching fraction, corrected for the number of hydrogens at each site, is 0.70 favoring the methyl position when the acceptor radical is CF3 and 0.54 when CF3CH2CHCH3 is the acceptor radical. Branching fraction results show that the CF3 substituent on the CF3CH2CHCH3 radical hinders disproportionation when CF3 is the acceptor radical. When the accepting radical is CF3CH2CHCH3 the CF3 substituent may slightly impede the disproportionation reaction, but the branching ratio is nearly statistical. The effect of substituents on the donor radical, CF3CH2CHX, will be discussed for the series X = H, CF3, Cl, and CH3 when the acceptor radical is CF3. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 549–557, 2001  相似文献   

14.
The reactions between F2 and the lowest members of the homologous series of perfluoroalkyl iodides (CF3I, C2F5I, and n-C3F7I) have been studied. For these compounds, an exponential decrease in the alkyl iodide concentration over time following an induction period is observed for certain experimental conditions. Other conditions lead to chaotic-like kinetic behavior where the rate of alkyl iodide consumption continually changes. Kinetic rate data with CF3I show that the disappearance rate depends upon both the type of surface and surface preparation. For all three compounds, Arrhenius plots reveal activation energies on the order of 10 kcal/mol, consistent with effective initiation steps of F2 + RI → RIF + F, where R represents the CF3, C2F5, or n-C3F7 radical respectively. The end products of the F2 + RI reactions are RF, R2, and IF5, suggesting that the R radicals play an important kinetic role. Introducing O2 into the F2 + RI reaction systems results in successive oxidation of R by O2, leading to the formation of CF2O as an additional end product. IF(B → X) emission is observed from the RI-rich F2 + RI reactions, confirming the existence of IF as an intermediate. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Rate constants were determined for the reactions of OH radicals with the hydrofluoroethers (HFEs) CH2FCF2OCHF2(k1), CHF2CF2OCH2CF3 (k2), CF3CHFCF2OCH2CF3(k3), and CF3CHFCF2OCH2CF2CHF2(k4) by using a relative rate method. OH radicals were prepared by photolysis of ozone at UV wavelengths (>260 nm) in 100 Torr of a HFE–reference–H2O–O3–O2–He gas mixture in a 1‐m3 temperature‐controlled chamber. By using CH4, CH3CCl3, CHF2Cl, and CF3CF2CF2OCH3 as the reference compounds, reaction rate constants of OH radicals of k1 = (1.68) × 10?12 exp[(?1710 ± 140)/T], k2 = (1.36) × 10?12 exp[(?1470 ± 90)/T], k3 = (1.67) × 10?12 exp[(?1560 ± 140)/T], and k4 = (2.39) × 10?12 exp[(?1560 ± 110)/T] cm3 molecule?1 s?1 were obtained at 268–308 K. The errors reported are ± 2 SD, and represent precision only. We estimate that the potential systematic errors associated with uncertainties in the reference rate constants add a further 10% uncertainty to the values of k1k4. The results are discussed in relation to the predictions of Atkinson's structure–activity relationship model. The dominant tropospheric loss process for the HFEs studied here is considered to be by the reaction with the OH radicals, with atmospheric lifetimes of 11.5, 5.9, 6.7, and 4.7 years calculated for CH2FCF2OCHF2, CHF2CF2OCH2CF3, CF3CHFCF2OCH2CF3, and CF3CHFCF2OCH2CF2CHF2, respectively, by scaling from the lifetime of CH3CCl3. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 239–245, 2003  相似文献   

16.
Rate coefficients, k, for the gas‐phase reaction CH3CO + Cl2 → products (2) were measured between 253 and 384 K at 55–200 Torr (He). Rate coefficients were measured under pseudo‐first‐order conditions in CH3CO with CH3CO produced by the 248‐nm pulsed‐laser photolysis of acetone, CH3C(O)CH3, or 2,3‐butadione, CH3C(O)C(O)CH3. The loss of CH3CO was monitored by cavity ring‐down spectroscopy (CRDS) at 532 nm. Rate coefficients were determined by first‐order kinetic analysis of the CH3CO temporal profiles for [Cl2] < 1 × 1014 molecule cm?3 and the analysis of the CRDS profiles by the simultaneous kinetics and ring‐down method for experiments performed with [Cl2] > 1 × 1014 molecule cm?3. k2(T) was found to be independent of pressure, with k2(296 K) = (3.0 ± 0.5) × 10?11 cm3 molecule?1 s?1. k2(T) showed a weak negative temperature dependence that is well reproduced by the Arrhenius expression k2(T) = (2.2 ± 0.8) × 10?11 exp[(85 ± 120)/T] cm3 molecule?1 s?1. The quoted uncertainties in k2(T) are at the 2σ level (95% confidence interval) and include estimated systematic errors. A comparison of the present work with previously reported rate coefficients for the CH3CO + Cl2 reaction is presented. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 543–553, 2009  相似文献   

17.
Rate constants were determined for the reactions of OH radicals with halogenated cyclobutanes cyclo‐CF2CF2CHFCH2? (k1), trans‐cyclo‐CF2CF2CHClCHF? (k2), cyclo‐CF2CFClCH2CH2? (k3), trans‐cyclo‐CF2CFClCHClCH2? (k4), and cis‐cyclo‐CF2CFClCHClCH2? (k5) by using a relative rate method. OH radicals were prepared by photolysis of ozone at a UV wavelength (254 nm) in 200 Torr of a sample reference H2O? O3? O2? He gas mixture in an 11.5‐dm3 temperature‐controlled reaction chamber. Rate constants of k1 = (5.52 ± 1.32) × 10?13 exp[–(1050 ± 70)/T], k2 = (3.37 ± 0.88) × 10?13 exp[–(850 ± 80)/T], k3 = (9.54 ± 4.34) × 10?13 exp[–(1000 ± 140)/T], k4 = (5.47 ± 0.90) × 10?13 exp[–(720 ± 50)/T], and k5 = (5.21 ± 0.88) × 10?13 exp[–(630 ± 50)/T] cm3 molecule?1 s?1 were obtained at 253–328 K. The errors reported are ± 2 standard deviations, and represent precision only. Potential systematic errors associated with uncertainties in the reference rate constants could add an additional 10%–15% uncertainty to the uncertainty of k1k5. The reactivity trends of these OH radical reactions were analyzed by using a collision theory–based kinetic equation. The rate constants k1k5 as well as those of related halogenated cyclobutane analogues were found to be strongly correlated with their C? H bond dissociation enthalpies. We consider the dominant tropospheric loss process for the halogenated cyclobutanes studied here to be by reaction with the OH radicals, and atmospheric lifetimes of 3.2, 2.5, 1.5, 0.9, and 0.7 years are calculated for cyclo‐CF2CF2CHFCH2? , trans‐cyclo‐CF2CF2CHClCHF? , cyclo‐CF2CFClCH2CH2? , trans‐cyclo‐CF2CFClCHClCH2? , and cis‐cyclo‐CF2CFClCHClCH2? , respectively, by scaling from the lifetime of CH3CCl3. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 532–542, 2009  相似文献   

18.
The rate coefficients for the reactions CHFO+F, CFO+F and the self-reaction of CFO were determined over the temperature range of 222–298 K. A computer controlled discharge-flow system with mass spectrometric detection was used. The results are expressed in the Arrhenius form (with energies in J): CHFO+F→CFO+HF: k1(T)=(9.7±0.7)·10−12 exp[−(5940±150)/RT] cm3 molecule−1 s−1 CFO+F+M→CF2O+M: FORMULA DISC=“MATH”>k2(T)=(2.60±1.17)·10−10 exp[−(10110±1250)/RT cm3 molecule−1 s−1FORMULA CFO+CFO→CF2O+CO: k3(T)=(3.77±2.7)·10−10 exp[−(8350±2800)/RT] cm3 molecule−1 s−1 © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 329–333, 1998  相似文献   

19.
Decomposition of the CF3CFHO radical formed in the reaction of CF3CFHO2 radicals with NO was studied at 296 and 393 K using a pulse radiolysis transient VIS-UV absorption absolute rate technique. At room temperature in 1 atmosphere of SF6 diluent it was found that the majority (79 ± 20)% of CF3CFHO radicals formed in the CF3CFHO2 + NO reaction decompose within 3 μs via C(SINGLE BOND)C bond scission. This result is discussed with respect to the current understanding of the atmospheric degradation of HFC-134a. As a part of the present work the rate constant ratio kCF3CFH+02/kCF3CFH+NO was determined to be 0.144 ± 0.029 in one atmosphere of SF6 diluent at 296 K. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 209–217, 1997.  相似文献   

20.
The rate constant for the reaction Cl + CHClO → HCl + CClO was determined from relative decay rates of CHClO and CH3Cl inthe photolysis of mixtures containing Cl2 (~1 torr), CH3Cl (~1 torr), and O2 (~0.1 torr) in 700 torr N2. In such mixtures CHClO was generated in situ as a principal product prior to complete consumption of O2. The value of k(Cl + CHClO)/k(Cl + CH3Cl) = 1.6 ± 0.2(3σ) combined with the literature value of k(Cl + CH3Cl) = 4.9 × 10?13 cm3/molecule sec gives k(Cl + CHClO) = 7.8 × 10?13 cm3/molecule sec at 298 ± 2 K, in excellent agreement with a previous value of (7.9 ± 1.5) × 10?13 cm3/molecule sec determined by Sanhueza and Heicklen [J. Phys. Chem., 79 , 7 (1975)]. Thus this reaction is approximately 100 times slower than the corresponding reactions of aldehydes and alkanes with comparable C? H bond energies (≤95 kcal/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号