首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of crosslinkable thermotropic liquid crystalline poly(ether-ester)s and copoly(ether-ester)s was prepared. All of the polymers were crosslinked by thermal treatment or photo-irradiation upon heating. The thermal stability and thermal crosslinking reaction of these polymers were investigated. These polymers also could be crosslinked by copolymerization with vinyl monomers, such as styrene or methyl methacrylate. The crosslinked polymers exhibited thermotropic liquid crystalline behavior after softening by heating. The phase behavior of linear polymers and crosslinked polymers was studied by differential scanning calorimetry (DSC) and an optical polarizing microscope equipped with a heating stage. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Syntheses of segmented copoly(ether-ester)s with (oxy-2-methyl-1,4-phenyleneoxycarbonyl-1,4-phenylene carbonyl)/(oxy-2-chloro-1,4-phenyleneoxycarbonyl-1,4-phenylene carbonyl) (methyl-/chloro-substituted) hard segments and poly(oxytetramethylene) soft segments, are reported. The methodology consisted of staged addition melt condensation of terephthaloyl chloride, poly(oxytetramethylene)glycol (POTMG; \[ \bar M_n \] = 250, 650, 1000, 2000) and methyl-/chloro-hydroquinone. Lengths of hard and soft segments were varied while the weight ratio of hard to soft segment was maintained constant. Copolymers were characterised for solubility behavior, and by infrared spectroscopy, x-ray diffraction, DSC, and polarizing microscopy. Thermal properties were found to be dependent on length of soft segment as well as on the type of substituent in the mesogenic core. In both methyl- as well as chloro-substituted copoly(ether-ester)s soft segment glass transition temperature (Tgs) was obtained between ?40 and ?50°C. All copoly(ether-ester)s are elastomeric at room temperature (25°C). These polymers exhibit thermotropic liquid crystalline behavior and were easily sheared and aligned in liquid crystalline state. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Two series of novel thermotropic liquid crystalline poly(imide-carbonate)s were prepared by melt polycondensation from various arylene or alkylene bis(phenylcarbonate)s by using N,N′-bis(hydroxyethyl)pyromellitimide and N,N′-bis(hydroxypropyl)pyromellitimide as monomers. Thermotropic liquid crystalline properties were characterized by a polarizing microscope with a heating stage and a differential scanning calorimeter (DSC). Nematic melts were found for the synthesized aromatic poly(imide-carbonate)s. In order to investigate whether the pyromellitimide unit could be used as a mesogenic unit for preparing LC polymers, a series of aliphatic poly(imide-carbonate)s was prepared in this study. However, no significant LC textures were found under the observation by polarizing microscope. It was suggested that the aspect ratio of the pyromellitimide unit was too short to form liquid crystalline poly(imide-carbonate)s. In addition, it was interesting that the aliphatic poly(imide-carbonate)s with a longer spacer (n = 3) in the pyromellitimide unit showed better crystallinity. Thermostabilities of all synthesized poly(imide-carbonate)s were measured by thermogravimetric analysis (TGA). © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Four series of copoly(amide-ester)s containing conjugated double bonds were prepared by using direct polycondensation in the presence of diphenylchlorophosphate (DPCP) and pyridine. Series I–III were prepared from para, meta-aminophenol, or their mixture with p-phenylene bis(acrylic acid) (PPBA), p-carboxylic cinnamic acid (PCCA), and stilbenedicarboxylic acid (SDBA), respectively. Series IV was prepared from a mixture of aminophenols [2-methyl 4-aminophenol (MePAP) and m-aminophenol (MAP)] with a mixture of diacids (PPBA and SDBA). Thermotropic liquid-crystalline behavior of these polymers was studied by differential scanning calorimetry (DSC), and optical polarizing microscopy equipped with a heating stage. Series I , series II , and P40–P100 of series IV could undergo crosslinking reaction by heating. However, series III could undergo crosslinking reaction only by photoirradiation upon heating. After crosslinking reaction occurred, the properties of these polymers were also examined by DSC, TGA, WAXD, and IR. The synthesized polymers could be crosslinked in the liquid-crystalline phase with retention of the order in the final crosslinked solid. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Two novel series of poly(arylidene-ether)s and copoly(aryl-idene-ether)s were synthesized by polycondensation of 4,4-diformyl-α,ω-diphenoxyalkane and 4,4′-diformyl-2,2′-dimeth-oxy-α,ω-diphenoxyalkane with cyclohexanone and/or cyclo-pentanone. The inherent viscosity of the polymers and copolymers thus prepared were in the range of 0.42–1.27 dL/g. The phase behavior of these polymers was studied by differential scanning calorimetry (DSC), optical polarizing microscopy using a heated stage, and thermogravimetric analyses. Almost all the polymers and copolymers exhibited thermotropic liquid crystalline properties. In most cases, the mesophase extends up to 310°C, where thermal decomposition prevents further observation. Methoxy substituents, on the benzene ring of these polymers, lower the transition temperature significantly. The morphology of polymer IXf was examined by scanning electronic microscope.  相似文献   

6.
Three series of polymers containing p-phenylene diacrylic group were prepared by direct polycondensation in the presence of diphenylchlorophosphate and pyridine. Series I was prepared from p-phenylene bis(acrylic acid) with various hydroquinones. Series II was prepared from p-phenylene bis (β-cyano acrylic acid) with methylhydroquinone. Series III was prepared from 3-methyl-4-aminophenol with p-phenylene bis(acrylic acid) or p-phenylene bis(β-cyano acrylic acid), respectively. The phase behavior of these polymers was studied by differential scanning calorimetry (DSC), optical polarizing microscopy equipped with a heating stage, and wide-angle x-ray diffraction (WAXD). It was found that these polymers, except IIIb , exhibit thermotropic liquid-crystalline properties and show threaded or Schlieren texture under the optical polarizing microscopic observation. Furthermore, the melting temperatures of these polymers were decreased in the range of 254–354°C by incorporating with p-phenylene diacrylic group into the main chain. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Microwave irradiation was applied to synthesize to the bulk synthesis of novel poly(ether-ester)s based on diol-ether of isosorbide (1) and adipoyl chloride (2) or terephthaloyl chloride (3). Thus, the poly(ether-ester)s (4 and 5) consist partially of isosorbide. In order to check the influence of microwaves and possible specific non-thermal microwave effects, the reactions were comparatively performed inside a thermostated oil bath under similar conditions. The reaction conditions were varied to optimize both yields and molecular weights of poly(ether-ester)s. The reaction proceeded roughly five times faster under microwave irradiation, the polycondensation being almost completed (yields upto approximately 95%) within 5 min to afford a series of novel poly(ether-ester)s based with relatively high average molecular weights (Mw upto approximately 8000). The resulting poly(ether-ester)s were characterized by NMR (1H and 13C), FT-IR spectrometry, SEC measurements and MALDI-TOF mass spectrometry. Thermal properties of the poly(ether-ester)s (4 and 5) were investigated by means of differential scanning calorimetry (DSC).  相似文献   

8.
New semi-rigid poly(ester-imide)s with cyanoazobenzene side chains were prepared by melt polycondensation of a diethyl isophthalate derivative of cyanoazobenzene with N, N′-dihexanols of five aromatic diimides in the presence of zinc acetate. Differential scanning calorimetry (DSC) measurements and polarizing microscope observations demonstrated that the polymers have glass transitions (Tg) between 46 and 93°C and show no liquid crystalline (LC) properties. All poly(ester-imide)s generated optical phase-conjugate (PC) signals at high reflectivity by degenerate four-wave mixing (DFWM) at low pump-beam power.  相似文献   

9.
A series of multiblock poly(ether-ester)s based on poly(butylene succinate) (PBS) as the hard segments and hydrophilic poly(ethylene oxide) (PEO) as the soft segments was synthesized with the aim of developing degradable polymers which could combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic poly(ether-ester)s were synthesized by the catalyzed two-step transesterification reaction of dimethyl succinate, 1,4-butanediol and α,ω-hydroxyl terminated poly(ethylene oxide) (PEO, = 1000 g/mol) in bulk. The content of soft PEO segments in the polymer chains was varied from about 10 to 50 mass%. The effect of the introduction of the soft PEO segments on the structure, thermal and physical properties, as well as on the biodegradation properties was investigated. The composition and structure of these aliphatic segmented copolyesters were determined by 1H NMR spectroscopy. The molecular weights of the polyesters were verified by gel permeation chromatography (GPC), as well as by viscometry of dilute solutions and polymer melts. The thermal properties were investigated using differential scanning calorimetry (DSC). The degree of crystallinity was determined by means of DSC and wide-angle X-ray scattering. A depression of melting temperature and a reduction of crystallinity of the hard segments with increasing content of PEO segments were observed. Biodegradation of the synthesized copolyesters, estimated in enzymatic degradation tests in phosphate buffer solution with Candida rugosa lipase at 37 °C was compared with hydrolytic degradation in the buffer solution. The weight losses of the samples were in the range from 2 to 10 mass%. GPC analysis confirmed that there were significant changes in molecular weight of copolyesters with higher content of PEO segments, up to 40% of initial values. This leads to conclusion that degradation mechanism of the poly(ether-ester)s based on PEO segments occurs through bulk degradation in addition to surface erosion.  相似文献   

10.
Aliphatic poly(carbonate-sulfone) homo- and copolymers were prepared from 1,3-bis(3-hydroxypropylsulfonyl)propane (Diol-333) and various alkanediols. The copolymers are random in nature since they were prepared by melt copolymerization. Both the homopolymer and the copolymers exhibited multiple reproducible first-order transitions during differential scanning calorimetry (DSC) heating scans, but most of them exhibited only single exotherm during cooling scans. Typical schlieren textures were observed when these polymers were cooled from their isotropic melts. The copolymers have wide-angle x-ray diffraction (WAXD) patterns almost identical to that of the homopolymer except in the low-angle spacing, indicating their packing in the crystalline domain in similar. DSC, cross-polarized optical microscopy, and WAXD revealed that these polymers were smectic liquid crystalline at room temperature. Since aliphatic poly(carbonate-sulfone)s are flexible linear polymers with no rigid rod components, the liquid crystalline phase formation is probably directed by the dipole–dipole interactions between sulfone groups in adjacent chains. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
郑世军  Kazuo  Akagi  Qun  Xua  Zi-fa  Li  Shao-kui  Cao  Qi-feng  Zhou 《高分子科学》2006,(3):265-271
Abstract The novel shish-kebab-type liquid crystalline poly(p-phenylene)s were synthesized through Suzuki coupling reaction from 2,5-bis[(4-n-alkoxyl)benzoyloxy]1,4-dibromobenzene (monomer 1) and 1,4-benzenediboronic acid bistrimethylene cyclic ester (monomer 2). Their structure and properties were characterized by GPC, DSC, X-ray diffraction and polarizing optical microscope (POM). It was found that the polymers turned to liquid crystalline phase above their melting point. The melting point (Tm) of the polymers decreases when the length of the alkoxy tails of the mesogenic units increases. The mesophase was identified by X-ray diffraction method. The polymers could dissolve in common organic solvents and show strong blue fluorescence. The maximum absorption bands of polymers prepared from annealed films have large red-shift due to the spontaneous orientation of the liquid crystalline side chains. The same phenomena were also observed in the fluorescence spectra.  相似文献   

12.
Novel side-chain liquid-crystalline poly(meth)acrylates were synthesized using 1-(3-hydroxyl-propyl)-3-[(4"-cyano-p-terphenyloxycarbonyl)alkyl]-1,1,3,3-tetramethyldisiloxane as the key intermediate. The polymers used a disiloxanemoiety as decoupling spacer with cyano-p-terphenyl as mesogenic unit. The products were characterized by NMR, GPC,DSC and polarizing optical microscopy. All the polymers with cyano-p-terphenyl mesogens formed a stable mesophase.However, if the mesogenic unit is replaced by cyano-p-biphenyl, the liquid crystalline character will be lost. The results alsoshowed that the decoupling is incomplete even if a complex and very flexible decoupling spacer is deliberately incorporatedto obtain the highest possible decoupling effect.  相似文献   

13.
Two series of poly(amide-azomethine-ether)s and poly(ester-azomethine-ether)s were prepared by the condensation of dialdehydes with N,N'-bis(aminobenzamide)s and 4,4′-bis(p-aminophenyl)terephthalester, respectively. The thermotropic liquid crystalline properties were examined by DSC microscopic observations. Almost half of the synthesized polymers exhibit thermotropic liquid crystalline properties which are in the nematic phase since threaded and/or Schlieren textures are observed under polarizing microscope. The effects of the number of amide group and the nature of the nonlinear bibenzamide moiety, which link in the rigid segment, on the thermotropic liquid crystalline properties of the homo- and co-poly(amide-azomethine-ether)s were also investigated.  相似文献   

14.
A new homologous series of thermotropic liquid crystalline poly(azomethine-ether)s was synthesized by solution polycondensation of various diformyl-alpha,omega-diphenoxyalkanes, I-VIII with 2,5-bis(m-aminobenzylidene)cyclopentanone, XI and 2,6-bis(m-aminobenzylidene)cyclohexanone, XII. The inherent viscosities of the polymers were in the range 0.34-0.75 dI g-1. The mesomorphic properties were studied as a function of the diphenoxyalkane spacer length. Analyses by DSC and optical polarized microscopy demonstrated that the poly(azomethine-ether)s form nematic mesophases over wide temperature ranges. The poly(azomethine-ether)s based on the cyclohexanone moiety had better thermal stabilities than the corresponding poly(azomethine-ether)s based on cyclopentanone.  相似文献   

15.
The optical transmittance of poly(ethylene terephthalate) foils has been investigated using the linear heating as well as the isothermal heating. It was found out that transmittance records obtained at linear heating show the crystallisation and melting processes distinctly. These results are in accordance with those achieved by DSC measurements. The isothermal heating was especially applied to investigate PET cold crystallisation. In its course the optical transmittance first decreases to a certain minimal value, regaining some of the transmittance in the final period of crystallisation (crystal growth). The used method is suitable for investigating crystallisation processes of polymers accomplished at very slow rates.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

16.
A series of poly(benzylidene‐ether)esters containing a photoreactive benzylidene chromophore in the main chain were synthesized from 2,6‐bis(4‐hydroxy‐3‐methoxybenzylidene)cyclohexanone (BHMBCH) with various aliphatic and aromatic diacid chlorides by an interfacial polycondensation technique. The intrinsic viscosity of the synthesized homo and copolymers determined by Ubbelohde viscometer was found to be 0.12 to 0.17 dL/g. The molecular structure of the monomer and polymers was confirmed by FT‐IR, 1H NMR, and 13C NMR spectral analyses. These polymers were studied for their thermal stability and photochemical properties. Thermal properties were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). It was found that the polymers were stable up to 280 °C and start degrading thereafter. Increase in acid methylene spacer length decreased the thermal stability. The self‐extinguishing property of the synthesized polymers was studied by calculating the limiting oxygen index (LOI) value using a Van Krevelen's equation. The influence of the length of methylene spacer on phase transition was investigated using DSC and odd‐even effect has been observed. Hot‐stage optical polarizing microscopic (HOPM) study showed that most of the polymers exhibited birefringence and opalescence properties. The photolysis of liquid crystalline poly(benzylidene‐ether)esters revealed that α,β‐unsaturated ketone moiety in the main chain dimerises through 2π + 2π cycloaddition reaction to form a cyclobutane derivative and leads to crosslinking. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
Polymerization of liquid crystalline bifunctional monomer N‐{{ω‐{4‐[4‐(11‐acryloyloxy)undecanoxybenzoyl]biphenyleneoxy} alkyl}}‐3,4‐dimethylpyrrole gave a side‐chain liquid crystalline polyacrylate containing 3,4‐dimethylpyrrole group. Liquid crystallinity was determined by DSC and optical polarizing microscope measurements. The monomers having pentylene, hexylene, and decylene as the alkylene spacer group between the mesogenic unit and the 3,4‐dimethylpyrrole group exhibited smectic and nematic phases on the heating and cooling stages. The radically polymerized polyacrylate derivatives containing the 3,4‐dimethylpyrrole group showed nematic phases on the heating and cooling stages. These polymers are the first example of side‐chain liquid crystalline polymers containing 3,4‐dimethylpyrrole as functional group for further reaction. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1214–1221, 2000  相似文献   

18.
热致液晶性序列嵌段共聚酯   总被引:1,自引:0,他引:1  
用1,10-癸二醇、聚四氢呋喃二醇(分子量为1050)与含液晶基元的缩聚单体2-甲基对苯撑双(4-氯甲酰)苯甲酸酯,通过溶液缩聚反应合成了一系列序列嵌段共聚酯。当取四氢呋喃二醇与癸二醇的重量配比小于70/30时,共聚物具有明显的液晶性。共聚物的液晶性用偏光显微镜、DSC和X射线衍射进行了表征。  相似文献   

19.
Two series of the thermotropic main chain poly(azomethine-urethane)s were synthesized by the polyaddition of azadiol, 1,8-octandiol with methylene bis(phenyl isocyanate) (MDI) and tolylene 2,4-diisocyanate (TDI) respectively. The mesomorphic properties and phase transition temperature of the polymers were characterized by differential scanning calorimetry and hot stage polarizing microscopy. These polymers showed nematic messophase. The non linear optical (NLO) activity of the polymers was also investigated.  相似文献   

20.
A series of aromatic copoly(ester)s containing conjugated double bonds was prepared from p-phenylene bis(acrylic acid) (PPBA) with a mixture of methylhydroquinone (MHQ) and various hydroxycarboxylic acids in the presence of diphenylchlorophosphate (DPCP) and pyridine as a catalyst and solvent. The phase behavior of these polymers was studied by differential scanning calorimetry (DSC) and thermal optical polarized microscopy. Under an optical polarized microscope all copoly(ester)s show a nematic thermotropic liquidcrystalline phase. Upon heating, these polymers undergo a photocrosslinking reaction characterized by IR and solubility analysis. This crosslinking reaction also takes place in the liquid-crystalline phase with the retention of the nematic order in the final crosslinked solid. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号