首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In aqueous solutions, inclusion complexation of Fe(III) tetrakis(4-sulfonatophenyl)porphyrin (FeTSPP) with alpha-cyclodextrin (alpha-CD), beta-CD, gamma-CD, and heptakis(2,3,6-tri-O-methyl)-beta-CD (TM-beta-CD) has been examined by means of absorption and induced circular dichroism spectroscopy. FeTSPP has been found to form inclusion complexes with beta-CD, gamma-CD, and TM-beta-CD in pH 3.2 buffers. At pH 10.1, where FeTSPP self-associates to form an oxo-bridged dimer, FeTSPP also forms inclusion complexes with alpha-CD, beta-CD, gamma-CD, and TM-beta-CD. The stoichiometries of the CD-FeTSPP inclusion complexes are 1:1, except for TM-beta-CD in pH 10.1 buffers where its 1:1 inclusion complex associates with TM-beta-CD to form a 2:1 inclusion complex at high TM-beta-CD concentrations. Equilibrium constants of FeTSPP for the formation of the 1:1 inclusion complexes have been evaluated for beta-CD, gamma-CD, and TM-beta-CD. Induced circular dichroism spectra of FeTSPP in alpha-CD and beta-CD solutions exhibit a signal pattern (a negative sign) that is different from those in acidic and basic solutions containing gamma-CD and that in basic solution containing TM-beta-CD, suggesting different inclusion modes towards FeTSPP.  相似文献   

2.
The potentiometric response characteristics with respect to salicylate anion of several membrane electrodes based on iron(III) tetraphenylporphyrin chloride (FeTPPCl) and derivatives with electrophilic and nucleophilic substituents, incorporated into plasticized polyvinylchloride (PVC) membranes were investigated. Complexes tetraphenyl porphyrin iron(III) chloride (FeTPPCl; A), tetrakis (4-methoxyphenyl) porphyrin iron(III) chloride (Fe(TOCH3PP)Cl; B), tetrakis (2,6-dichlorophenyl) porphyrin iron(III) chloride (Fe(TDClPP)Cl; C), tetrakis (4-nitrophenyl) porphyrin iron(III) chloride (Fe(TNO2PP)Cl; D), and tetrakis (pentafluorophenyl) porphyrin iron(III) chloride (Fe(TPFPP)Cl; E) were used as anion carriers in the membrane electrodes. The sensitivity, working range, detection limit, response mechanism, and selectivity of the membrane sensor toward interference shows a considerable dependence on the type of carrier substituent and the pH value of the sample solution. Potentiometric investigations in solutions of various pH show that the carrier complex containing fluoro substituents (E), which have very strong electron-accepting properties and a high ability to form hydrogen bonds, is capable of serving as a positively charged ionophore. Some other ionophores are capable of serving as both charged and neutral carriers under different conditions. The electrodes prepared in this work show super-Nernstian slopes with respect to salicylate concentration, which tend to a Nernstian response (slope near to -59 mV decade-1) upon an increase of the pH of the test solution. The results of UV/Vis absorption spectroscopy are used for interpretation of the formation of an oxene complex between salicylate and iron porphyrins.  相似文献   

3.
The polyanionic water-soluble and non-mu-oxo-dimer-forming iron porphyrin iron(III) 5(4),10(4),15(4),20(4)-tetra-tert-butyl-5(2),5(6),15(2),15(6)-tetrakis[2,2-bis(carboxylato)ethyl]-5,10,15,20-tetraphenylporphyrin, (P(8-))Fe(III) (1), was synthesized as an octasodium salt by applying well-established porphyrin and organic chemistry procedures to bromomethylated precursor porphyrins and characterized by standard techniques such as UV-vis and (1)H NMR spectroscopy. A single pK(a1) value of 9.26 was determined for the deprotonation of coordinated water in (P(8-))Fe(III)(H(2)O)(2) (1-H(2)()O) present in aqueous solution at pH <9. The porphyrin complex reversibly binds NO in aqueous solution to give the mononitrosyl adduct, (P(8-))Fe(II)(NO(+))(L), where L = H(2)O or OH(-). The kinetics of the binding and release of NO was studied as a function of pH, temperature, and pressure by stopped-flow and laser flash photolysis techniques. The diaqua-ligated form of the porphyrin complex binds and releases NO according to a dissociative interchange mechanism based on the positive values of the activation parameters DeltaS() and DeltaV() for the "on" and "off" reactions. The rate constant k(on) = 6.2 x 10(4) M(-1) s(-1) (24 degrees C), determined for NO binding to the monohydroxo-ligated (P(8-))Fe(III)(OH) (1-OH) present in solution at pH >9, is markedly lower than the corresponding value measured for 1-H(2)O at lower pH (k(on) = 8.2 x 10(5) M(-1) s(-1), 24 degrees C, pH 7). The observed decrease in the reactivity is contradictory to that expected for the diaqua- and monohydroxo-ligated forms of the iron(III) complex and is accounted for in terms of a mechanistic changeover observed for 1-H(2)O and 1-OH in their reactions with NO. The mechanistic interpretation offered is further substantiated by the results of water-exchange studies performed on the polyanionic porphyrin complex as a function of pH, temperature, and pressure.  相似文献   

4.
The free-radical polymerization of methyl methacrylate in the presence of chlorine-containing complexes of Fe(III) with 5,10,15,20-tetrakis(3′,5′-di-tert-butylphenyl)porphyrin and 5,10,15,20-tetrakis(3′-butoxyphenyl)porphyrin, as well as in the presence of the acetate complex of Co(III) 5,10,15,20-tetrakis(3′,5′-di-tert-butylphenyl)porphyrin, has been investigated. The kinetic features of the process and the molecular mass characteristics of polymers are studied, and a feasible polymerization mechanism is proposed.  相似文献   

5.
The present study focuses on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes formed in the [Fe(III)(tpfpp)X]/H(2)O(2)/HOO(-) system (TPFPP=5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin; X=Cl(-) or CF(3) SO(3)(-)) in acetonitrile under basic conditions at -15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high-spin [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] could be observed with the application of a low-temperature rapid-scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O-O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo- to heterolytic O-O bond cleavage is observed for high- [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron-rich porphyrin ligands, electron-deficient [Fe(III)(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [Fe(III)(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)-oxo porphyrin π-cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

6.
《Electroanalysis》2003,15(21):1707-1712
Construction of a highly stable covalently attached multilayer film electrode containing iron porphyrin was achieved by UV irradiation of ionic self‐assembled multilayer films of diazo‐resins (DAR) and anionic Fe(III)tetrakis(p‐sulfonatophenyl)porphyrin (FeTSPP). The multilayer films had been characterized by UV, IR spectra and cyclic valtammetry. The electrocatalytic transformation of sulfite to SO42? by the multilayer film electrode containing FeTSPP was investigated. In 0.1 M NH4OH? NH4Cl buffer solution (pH 8.74) and 0.1 M borate buffer solution (pH 9.18) the electrocatalytic oxidation of sulfite through the multilayer film electrode can be performed. However, in acetate buffer solution (pH 4.0) the electrocatalytic reduction of sulfite by the multilayer film electrode had also good activity. The modified electrode also exhibited a fast response and good stability.  相似文献   

7.
The reaction of iron(III) (meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (Fe(III)TMPyP) with nitric oxide (NO) was studied by electronic absorption spectroscopy, ESR, and electrochemical and spectroelectrochemical techniques in aqueous solutions with pH from 2.2 to 12.0. Fe(III)TMPyP has been found to undergo a reductive nitrosylation in all pHs, and the product of nitric oxide binding to the porphyrin has been determined as iron(II) porphyrin nitrosyl complex ([Fe(II)(NO)TMPyP]). The rate of the reductive nitrosylation exhibits a tendency to get faster with increase in pH. An intermediate species was observed around neutral pH by spectroelectrochemical technique and was proposed to be the iron(II) nitrosyl complex of the mu-oxo dimeric form of FeTMPyP, which is known to be a predominant in neutral solutions.  相似文献   

8.
A full quantitative analysis of Fe K-edge X-ray absorption spectra has been performed for hemes in two porphynato complexes, that is, iron(III) tetraphenylporphyrin chloride (Fe(III)TPPCl) and iron(III) tetraphenylporphyrin bis(imidazole) (Fe(III)TPP(Imid)2), in two protein complexes whose X-ray structure is known at atomic resolution (1.0 A), that is, ferrous deoxy-myoglobin (Fe(II)Mb) and ferric aquo-myoglobin (Fe(III)MbH2O), and in ferric cyano-myoglobin (Fe(III)MbCN), whose X-ray structure is known at lower resolution (1.4 A). The analysis has been performed via the multiple scattering approach, starting from a muffin tin approximation of the molecular potential. The Fe-heme structure has been obtained by analyzing independently the Extended X-ray Absorption Fine Structure (EXAFS) region and the X-ray Absorption Near Edge Structure (XANES) region. The EXAFS structural results are in full agreement with the crystallographic values of the models, with an accuracy of +/- 0.02 A for Fe-ligand distances, and +/-6 degrees for angular parameters. All the XANES features above the theoretical zero energy (in the lower rising edge) are well accounted for by single-channel calculations, for both Fe(II) and Fe(III) hemes, and the Fe-N p distance is determined with the same accuracy as EXAFS. XANES evaluations of Fe-5th and Fe-6th ligand distances are determined with 0.04-0.07 A accuracy; a small discrepancy with EXAFS (0.01 to 0.05 A beyond the statistical error), is found for protein compounds. Concerns from statistical correlation among parameters and multiple minima in the parameter space are discussed. As expected, the XANES accuracy is slightly lower than what was found for polarized XANES on Fe(III)MbCN single crystal (0.03-0.04 A), and states the actual state-of-the-art of XANES analysis when used to extract heme-normal parameters in a solution spectrum dominated by heme-plane scattering.  相似文献   

9.
The 1H NMR spectra of iron(III) 5-ethynyl-10,15,20-tri(p-tolyl)porphyrin [(ETrTP)Fe(III)X(n)], iron(III) 5-(phenylethynyl)-10,15,20-tri(p-tolyl)porphyrin [(PETrTP)Fe(III)X(n)], iron(III) 5-(phenylbutadiynyl)-10,15,20-tri(p-tolyl)porphyrin [(PBTrTP)Fe(III)X(n)], iron(III) 5,10,15,20-tetra(phenylethynyl)porphyrin [(TPEP)Fe(III)X(n)], iron(III) 1,4-bis-[10,15,20-tri(p-tolyl)porphyrin-5-yl]-1,3-butadiyne {[(TrTP)Fe(III)X(n)]2 B}, and 5,10,15-triphenylporphyrin [(TrPP)Fe(III)X(n)] have been studied to elucidate the impact of meso-ethynyl substitution on the electronic structure and spin density distribution of high-spin (X = Cl-, n = 1) and low-spin (X = CN-, n = 2) derivatives. The meso substituents, i.e., ethynyl, phenylethynyl, and phenylbutadiynyl, provided insight into the efficiency of spin density delocalization along structural elements that are typically applied to transmit electronic effects along multipart polyporphyrinic systems. The positive spin density localized at the meso-carbon of high-spin iron(III) ethynylporphyrins is effectively delocalized along the ethyne or butadiyne fragment as illustrated by the comparison of isotropic shifts of C(meso)-H and -CC-H determined for (TrPP)Fe(III)Cl (-82.6 ppm, 293 K) and (ETrTP)Fe(III)Cl (-49.5 ppm, 298 K). The replacement of the ethynyl hydrogen by phenyl or phenylethynyl provided evidence for the pi spin density distribution around the introduced phenyl ring. An analysis of the isotropic shifts for the low-spin bis-cyanide iron(III) porphyrins series reveals the analogous mechanism of spin density transfer. Treatment of high-spin [(TrTP)Fe(III)Cl]2 B with a base resulted in formation of the cyclic [(TrTP)Fe(III)OFe(III)(TrTP)B]2 complex linked by two mu-oxo bridges. (TPEP)H2 has been characterized by X-ray crystallography as a porphyrin dication where two molecules of trifluoroacetic acid associate with two coordinated trifluoroacetate anions. The X-ray structure of bis-tetrahydrofuran 1,4-bis[10,15,20-tri(p-tolyl)porphyrinatozinc(II)-5-yl]-1,3-butadiyne complex {[(TrTP)Zn(II)(THF)]2 B} reveals two parallel, non-coplanar [(TrTP)Zn(THF)] subunits linked by the linear butadiyne moiety.  相似文献   

10.
The metal complex (5,10,15,20‐tetrakis‐(4‐sulfonatophenyl)‐porphyrin‐iron (III) chloride (FeTSPP) was new employed in an environmentally benign protocol as an efficient catalyst for a “click” chemistry approach for the synthesis of tetrazole and guanindinyltetrazole derivatives via [2 + 3] cycloaddition reaction of nitriles and azide derivatives in aqueous medium. The synthesized compounds were obtained in excellent yield, short reaction times and a recoverable catalyst.  相似文献   

11.
This study investigated the protonation of nitrogen atoms in porphyrins with meso-phenyl p-substituted by an electron-withdrawing group using N 1s X-ray photoelectron spectroscopy (XPS), the N K X-ray absorption near-edge structure (XANES), and the discrete variational (DV)-Xalpha molecular orbital (MO) method. Both tetraphenylporphyrin (TPP) and tetrakis(p-sulfonatophenyl)porphyrin (TSPP) have a single structure: the former has two protonated and two non-protonated N atoms in the porphine ring; the latter has four protonated N atoms in the porphine ring. In contrast, a combination of XPS, XANES, and DV-Xalpha MO calculations shows that tetrakis(p-carboxyphenyl)porphyrin (TCPP) has a dual structure: one structure has two protonated and two non-protonated N atoms; the other has four protonated N atoms. Furthermore, this result was also considered based on the protonation constants of N atoms in the porphyrins. The correlation between the strength of electron-withdrawing groups and protonation to N atoms in porphyrins can be described using the spectral patterns of the N 1s XPS and N K XANES spectra.  相似文献   

12.
The availability of the parent compound, meso-hexaethylporphodimetheneiron(II), [(Et6N4)Fe] (2), of this report results from a novel synthetic methodology that makes [Et6N4Li2] (1) easily available. The major focus is on how the axial positions, which are the key reactive sites in metalloporphyrins, and the electronic configuration of the metal can be affected by the breakdown of the aromaticity of the porphyrin skeleton and by the nonplanar conformation of the ligand. DFT calculations indicate a 3B1(dz2)1(dyz)1 ground state for 2 versus the 3A2(dxz)1(dyz)1 ground state in the porphyrin analogue. The intermediate-spin state (S = 1) of 2 changed drastically upon addition of one or two axial ligands, as hexacoordination is preferred by iron(II). The hexacoordinate complexes [(Et6N4)Fe(L)(L')] (L = L' = THF, 3; L = L' = Py, 4; L = PhNO, L' = Py, 14) have been isolated and structurally characterized. Strong-field ligands lead to a low-spin diamagnetic state for iron(II), namely for complexes 4-7, 9, and 14, whereas 3 is a typical d6 high-spin complex, as is the pentacoordinate [(Et6N4)Fe(CN)]Bu4N (8). The structural analysis showed common features for 6, 7, 9, and 14: i) a small displacement of the metal from the N4 plane, and ii) an N4 cavity, larger than that in the corresponding porphyrins, affecting the Fe-N bond lengths. The 1H NMR spectrum is quite diagnostic of the two-fold symmetry in the diamagnetic hexacoordinate complexes, revealing either a D2h or a C2v symmetry. The CO stretching frequency (1951 cm(-1)) in complex 6 probes the good electron density at the metal. The one-electron oxidation of 2 led to pentacoordinate iron(III) derivatives [(Et6N4)Fe(Cl)] (10), [(Et6N4)2Fe2(mu-O)] (11), and [(Et6N4)2Fe2(mu-p-OC6H4-O)] (12). Complex 10 is a typical high-spin iron(III) (5.85muB at 298 K), while 11 and 12 behave as antiferromagnetic coupled iron(III) (J = -9.4cm(-1), 12, and J = -115cm(-1), 11). In complexes 10, 11, and 12 iron is sitting in a quite distorted square pyramidal geometry, in which the ligand displays a very distorted roof conformation with different degrees of ruffling. Distinctive structural and magnetic features have been found for the nitrosyl derivative [(Et6N4)Fe-NO], which has a low-spin state (S = 1/2) and the following structural parameters: Fe-N-O, 147.3(2) degrees; Fe-N, 1.708(2) A; N-O, 1.172(3) A. A comparative structural, magnetic, and theoretical analysis of the compounds listed above has been made with the analogous porphyrin derivatives. The detailed structural investigation has been mapped through the X-ray analysis of 2, 7, 8, 9, 11, 13, and 14.  相似文献   

13.
We report evidence for the formation of long-lived photoproducts following excitation of iron(III) tetraphenylporphyrin chloride (Fe((III))TPPCl) in a 1:1 glass of toluene and CH(2)Cl(2) at 77 K. The formation of these photoproducts is dependent on solvent environment and temperature, appearing only in the presence of toluene. No long-lived product is observed in neat CH(2)Cl(2) solvent. A 2-photon absorption model is proposed to account for the power-dependent photoproduct populations. The products are formed in a mixture of spin states of the central iron(III) metal atom. Metastable six-coordinate high-spin and low-spin complexes and a five-coordinate high-spin complex of iron(III) tetraphenylporphyrin are assigned using structure-sensitive vibrations in the resonance Raman spectrum. These species appear in conjunction with resonantly enhanced toluene solvent vibrations, indicating that the Fe((III)) compound formed following photoexcitation recruits a toluene ligand from the surrounding environment. Low-temperature transient absorption (TA) measurements are used to explain the dependence of product formation on excitation frequency in this photochemical model. The six-coordinate photoproduct is initially formed in the high-spin Fe((III)) state, but population relaxes into both high-spin and low-spin state at 77 K. This is the first demonstration of coupling between the optical and magnetic properties of an iron-centered porphyrin molecule.  相似文献   

14.
Two new dinucleating ligands 1,2,4,5-tetrakis(2-pyridinecarboxamido)benzene, H(4)(tpb), and 1,2,4,5-tetrakis(4-tert-butyl-2-pyridinecarboxamido)benzene, H(4)(tbpb), have been synthesized, and the following dinuclear cyano complexes of cobalt(III) and iron(III) have been isolated: Na(2)[Co(III)(2)(tpb)(CN)(4)] (1); [N(n-Bu)(4)](2)[Co(III)(2)(tbpb)(CN)(4)] (2); [Co(III)(2)(tbpb(ox2))(CN)(4)] (3); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(N(3))(4)] (4); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(CN)(4)] (5); [N(n-Bu)(4)](2)[Fe(III)(2)(tbpb)(CN)(4)] (6). Complexes 2-4 and 6 have been structurally characterized by X-ray crystallography at 100 K. From electrochemical and spectroscopic (UV-vis, IR, EPR, M?ssbauer) and magnetochemical investigations it is established that the coordinated central 1,2,4,5-tetraamidobenzene entity in the cyano complexes can be oxidized in two successive one-electron steps yielding paramagnetic (tbpb(ox1))(3)(-) and diamagnetic (tbpb(ox2))(2)(-) anions. Thus, complex 6 exists in five characterized oxidation levels: [Fe(III)(2)(tbpb(ox2))(CN)(4)](0) (S = 0); [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Fe(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Fe(III)Fe(II)(tbpb)(CN)(4)](3)(-) (S = (1)/(2)); [Fe(II)(2)(tbpb)(CN)(4)](4)(-) (S = 0). The iron(II) and (III) ions are always low-spin configurated. The electronic structure of the paramagnetic iron(III) ions and the exchange interaction of the three-spin system [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) are characterized in detail. Similarly, for 2 three oxidation levels have been identified and fully characterized: [Co(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Co(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Co(III)(2)(tbpb(ox2))(CN)(4)](0). The crystal structures of 2 and 3 clearly show that the two electron oxidation of 2 yielding 3 affects only the central tetraamidobenzene part of the ligand.  相似文献   

15.
《中国化学快报》2023,34(1):107813
Spin properties of organic molecules have attracted great interest for their potential applications in spintronic devices and quantum computing. Fe-tetraphenyl porphyrin (FeTPP) is of particular interest for its robust magnetic properties on metallic substrates. FeTPP is prepared in vacuum via on-surface synthesis. Molecular structure and spin-related transport properties are characterized by low-temperature scanning tunneling microscope and spectroscopy at 0.5 K. Density functional theory calculations are performed to understand molecular adsorption and spin distribution on Au(111). The molecular structure of FeTPP is distorted upon adsorption on the substrate. Spin excitations of FeTPP are observed on the Fe atom and high pyrrole groups in differential conductance spectra. The calculated spin density distribution indicates that the electron spin of FeTPP is mainly distributed on the Fe atom. The atomic transmission calculation indicates that electrons transport to substrate is mediated through Fe atom, when the tip is above the high pyrrole group.  相似文献   

16.
The photochemical and photocatalytic properties of iron meso-tetraarylporphyrins bearing an OH(-) axial ligand and different substituents in the beta-positions of the porphyrin ring are reported. Irradiation (lambda = 365 nm) in the absence of dioxygen leads to the reduction of Fe(III) to Fe(II) with the formation of OH(*) radicals. Substituents at the pyrrole beta-positions are found to markedly affect the photoreduction quantum yields. Under aerobic conditions, this photoreaction can induce the subsequent oxidation of cyclohexane to cyclohexanone and cyclohexanol by O(2) itself. The process occurs under mild conditions (22 degrees C; 760 Torr of O(2)) and without the consumption of a reducing agent. The polarity of the solvent and the nature of the porphyrin ring have a remarkable effect on the selectivity of the photooxidation process, likely controlling the cleavage of O-O bonds of possible iron peroxoalkyl intermediates. In particular, in pure cyclohexane, oxidation occurs with the selective formation of cyclohexanone; in contrast, in dichloromethane/cyclohexane mixed solvent, the main oxidation product is cyclohexanol. Phenyl-tert-butylnitrone (pbn) has been found to quench the radical chain autooxidation of the substrate thus increasing the yield of cyclohexanol. This becomes the only oxidation product when iron 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin hydroxide (Fe(III)(TDCPP)(OH)) is used as photocatalyst.  相似文献   

17.
Coordination of sigma-aryl carbanions by chloroiron(II) 5,20-ditolyl-10,15-diphenyl-21-oxaporphyrin (ODTDPP)Fe(II)Cl has been followed by (1)H NMR spectroscopy. Addition of pentafluorophenyl Grignard reagent (C(6)F(5))MgBr to the toluene solution of (ODTDPP)Fe(II)Cl in the absence of dioxygen at 205 K resulted in the formation of the high-spin (ODTDPP)Fe(II)(C(6)F(5)). The titration of (ODTDPP)Fe(II)Cl with a solution of (C(6)H(5))MgBr carried at 205 K yields a rare six-coordinate species which binds two sigma-aryl ligands [(ODTDPP)Fe(II)(C(6)H(5))(2)](-). Warming of the [(ODTDPP)Fe(II)(C(6)H(5))(2)](-) solution above 270 K results in the decomposition to mono-sigma-phenyliron species (ODTDPP)Fe(II)(C(6)H(5)). Controlled oxidation of [(ODTDPP)Fe(II)(C(6)H(5))(2)](-) with Br(2) affords (ODTDPP)Fe(III)(C(6)H(5))Br, which demonstrates a typical (1)H NMR pattern of low-spin sigma-aryl iron(III) porphyrin. The considered oxidation mechanism involves the (ODTDPP)Fe(III)(C(6)H(5))(2) species, which is readily reduced to the iron(I) 21-oxaporphyrin, followed by oxidation with Br(2) and replacement of one bromide anion by aryl substituent. The (1)H NMR spectra of paramagnetic iron complexes have been examined in detail. Functional group assignments have been made with the use of selective deuteration. The peculiar (1)H NMR spectral features of [(ODTDPP)Fe(II)(p-CH(3)C(6)H(4))(2)](-) (sigma-p-tolyl: ortho, 30.8; meta, 53.6; para-CH(3), 42.1; furan: -16.0; beta-H pyrrole: -27.5, -34.3, -41.8 ppm, at 205 K) are without a parallel to any iron(II) porphyrin or heteroporphyrin and indicate a profound alteration of the electronic structure of iron(II) porphyrin upon the coordination of two sigma-aryls.  相似文献   

18.
The reactivity of iron(III) tetraphenylporphyrin pi-cation radical (TPP(*))Fe(III)(ClO(4))(2), (1-1) iron(III) tetra-p-tolylporphyrin pi-cation radical (TTP(*))Fe(III)(ClO(4))(2) (1-2) and iron(III) tetramesitylporphyrin pi-cation radical (TMP(*))Fe(III)(ClO(4))(2) (1-3) complexes with 2,4,6-collidine, 2,3,6-collidine, 2-picoline, 2,6-di-tert-butylpyridine, and 2,6-dibromopyridine has been examined by (1)H NMR spectroscopy in dichloromethane-d(2) solution at low temperatures. These complexes undergo hydration processes which are essential in the generation of highly oxidized species via acid base/equilibria of coordinated water followed by disproportionation pathway, giving as sole stable products [(TPP(*))Fe(III)OFe(III)(TPP)](+) (4-1), [(TTP(*))Fe(III)OFe(III)(TTP)](+) (4-2), and (TMP)Fe(III)(OH) (6) respectively. The sterically hindered pyridines act as efficient proton scavengers. Two novel highly oxidized iron complexes have been detected by (1)H NMR spectroscopy after addition of 2,4,6-collidine to (TTP(*))Fe(III)(ClO(4))(2) or (TPP(*))Fe(III)(ClO(4))(2) in dichloromethane-d(2) solution at 202 K. New intermediates have been identified as iron porphyrin N-oxide complexes, i.e., iron(III) porphyrin N-oxide cation radical (2-n) and iron(IV) porphyrin N-oxide radical (3-n). The (1)H NMR results indicate that the D(4)(h)() symmetry of the parent iron(III) pi-cation radical is drastically reduced upon disproportionation in the presence of proton scavengers. Both species are very unstable and were observed from 176 to 232 K. The intermediate 2-2 has a (1)H NMR spectrum which demonstrates large hyperfine shifts (ppm) for the meso p-tolyl substituents (ortho 98.0, 94.8, 92.9, 91.7; meta -34.8, -38.7, -41.5, -42.3; p-CH(3) -86.3, -88.0) which are consistent with presence of an N-substituted iron porphyrin radical in the product mixture. The characteristic (1)H NMR spectrum of 2-2 includes six pyrrole resonances at 149.6, 118.2, 115.4, 88.3, 64.6, and 55.7 ppm at 202 K, i.e., in the positions corresponding to iron(III) high-spin porphyrins. On warming to 222 K, the pyrrole resonances broaden and then coalesce pairwaise. Such dynamic behavior is accounted for by a rearrangement mechanism which involves an inversion of the porphyrin puckering. The pattern of p-tolyl resonances revealed the cation radical electronic structure of 3-2. The p-tolyl resonances are divided in two distinct sets showing opposite direction of the isotropic shift for the same ring positions. The pyrrole resonances of 3-2 also demonstrated downfield and upfield shifts. A disproportionation mechanism of the hydrated iron porphyrin cation radicals to generate 2 and 3 has been proposed. Both intermediates react with triphenylphosphine to produce triphenylphosphine oxide and high-spin iron porphyrins. Addition of 2,4,6-collidine to (TMP(*))Fe(III)(ClO(4))(2) does not produce analogs of 2 and 3 found for sterically unprotected porphyrins. It results instead in the formation of a variety of X(TMP(*))Fe(IV)O (5) complexes also accounted for by the disproportionation process.  相似文献   

19.
The structure of iron and managanese ions substituted in the framework of nanoporous AlPO-5 is determined by ex situ and in situ X-ray absorption spectroscopy. Fe K-edge XANES and EXAFS studies clearly indicate that iron ions are present as Fe(III) in octahedral coordination in the assynthesised material and tetrahedral coordination in the calcined material in both pure FeAlPO-5 and FeMnalPO-5. XANES and EXAFS results also indicate that reaction with hydrogen peroxide causes the removal of Fe(III) ions from the framework. Mn K-edge XANES and EXAFS of FeMnAlPO-5 samples indicate that Mn(II) ions are present in the framework, tetrahedrally coordinated, in the as-synthesised material but upon calcination it is found that the Mn(II) ions are removed from the framework, suggesting a different synthesis strategy is necessary to stabilise the Mn(II) ions in the framework simultaneously with Fe(III) ions.  相似文献   

20.
A series of FeCo-SiO(2) nanocomposite aerogels having different FeCo loadings of 3, 5, and 8 wt % were prepared using a novel urea-assisted sol-gel route. The size of the nanoparticles, which was estimated using Scherrer analysis of the main peak of the x-ray diffraction pattern, varies from 3 to 8 nm. X-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) techniques at both Fe and Co K edges were used to investigate the structure of the FeCo nanoparticles. EXAFS and XANES show that FeCo nanoparticles have the typical bcc structure. Evidence of oxidation was observed in low FeCo content aerogels. Spatially resolved electron energy loss spectroscopy analysis suggests the formation of a passivation layer of predominantly iron oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号