首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new algorithm [Nguyen, T. L.; Stanton, J. F.; Barker, J. R. Chem. Phys. Lett. 2010, 9, 499] for the semiclassical transition-state theory (SCTST) formulated by W. H. Miller and co-workers is used to compute rate constants for the isotopologues of the title reaction, with no empirical adjustments. The SCTST and relevant results from second-order vibrational perturbation theory (VPT2) are summarized. VPT2 is used at the CCSD(T) level of electronic structure theory to compute the anharmonicities of the fully coupled vibrational modes (including the reaction coordinate) of the transition structure. The anharmonicities are used in SCTST to compute the rate constants over the temperature range from 200 to 2500 K. The computed rate constants are compared to experimental data and theoretical calculations from the literature. The SCTST results for absolute rate constants and for both primary and secondary isotope effects are in excellent agreement with the experimental data for this reaction over the entire temperature range. The sensitivity of SCTST to various parameters is investigated by using a set of simplified models. The results show that multidimensional tunneling along the curved reaction path is important at low temperatures and the anharmonic coupling among the vibrational modes is important at high temperatures. The theoretical kinetics data are also presented as fitted empirical algebraic expressions.  相似文献   

2.
The reversible reaction NH3 + H ⇌ H2 + NH2, which plays an important role in NH3 fuel combustion, is studied with a theoretical approach that combines the high-accuracy extrapolated ab initio thermochemistry (HEAT) protocol with semiclassical transition state theory (SCTST). The calculated forward reaction is endothermic by 11.8 ± 1 kJ/mol, in nearly perfect agreement with the active thermochemical tables (ATcT) value of 11.5 ± 0.2 kJ/mol. Using this improved thermochemistry yields better rate constants, especially at low temperatures. Experimental rate constants available from 400 to 2000 K for the forward and reverse reaction pathways can be reproduced (within 20%) by the calculations from first principles.  相似文献   

3.
Detailed chemical kinetic mechanisms for the synthesis of complex organic molecules in the interstellar medium are at an early stage of developement. That such synthesis must take place is well-known from chemical analysis of sampled asteroids. As molecular complexity increases the number of possible structural isomers also increases with the consequence that the nascent species may adopt a different spatial arrangement, to the lowest energy one. As part of a program of investigations of the hydrogen atom transfer reaction or tautomerization of imidic acid–amide species H-O=C-N- $\rightleftharpoons$ O=C-N-H we have studied the kinetics for a number of nucleobases, namely cytosine, thymine and uracil where a cyclic form of tautomerism (lactim–lactam) is encountered. Together with a fourth, 5-aza-uracil (1,3,5-triazine-2,4(1H,3H)-dione), we report on the rates of reaction at low temperatures 50–200 K for both the direct unimolecular process and the similar transformation mediated by an additional water molecule. We show that these tautomerization reactions can be categorized into three classes, and highlight the importance of quantum mechanical tunneling on the rate constants at these low temperatures. We further present some thermochemistry data, such as formation enthalpies, entropies, isobaric heat capacities and enthalpy functions.  相似文献   

4.
Li Wang  Jing-yao Liu  Ze-sheng Li   《Chemical physics》2008,351(1-3):154-158
The dynamic properties of the hydrogen abstraction reactions of CF2H2 and CF3H with F atom are investigated in the temperature range of 182–2000 K. The minimum-energy path (MEP) is optimized at MP2/6-311 G(d, p) level, then the energy profiles are refined at the CCSD(T)/6-311++G(3df, 2pd) level (single-point). The theoretical rate constants, which are calculated by the variational transition state theory (VTST) including the small curvature tunneling (SCT) correction, are in good agreement with the experimental ones. It is found that the rate constant of the CF2H2 + F reaction are larger than that of the CF3H + F reaction and the activation energies exhibit in the just opposite order. This phenomenon can be rationalized by the hardness η of the halomethane molecules. The comparison of the two reactions with the CFH3 + F reaction is made. It is found that the rate constants decrease in the order of CFH3 + F > CF2H2 + F > CF3H + F. The effect of fluorine substitution leads to a dramatic increase in the activation energy and a decrease in the preexponential factor. We hope that present theoretical studies for these compounds can give further information concerning how fluorine substitution affects the rate constants of hydrogen abstraction reactions.  相似文献   

5.
In the last few years, coal mine methane (CMM) has gained significance as a potential non-conventional gas fuel. The progressive depletion of common fossil fuels reserves and, on the other hand, the positive estimates of CMM resources as a by-product of mining promote this fuel gas as a promising alternative fuel. The increasing importance of its exploitation makes it necessary to check the capability of the present-day models and equations of state for natural gas to predict the thermophysical properties of gases with a considerably different composition, like CMM. In this work, accurate density measurements of a synthetic CMM mixture are reported in the temperature range from (250 to 400) K and pressures up to 15 MPa, as part of the research project EMRP ENG01 of the European Metrology Research Program for the characterization of non-conventional energy gases. Experimental data were compared with the densities calculated with the GERG-2008 equation of state. Relative deviations between experimental and estimated densities were within a 0.2% band at temperatures above 275 K, while data at 250 K as well as at 275 K and pressures above 10 MPa showed higher deviations.  相似文献   

6.
In this contribution we introduce an electronic‐structure‐theory‐based approach to a quantum‐chemical thermochemistry of solids. We first deal with local and collective atomic displacements and explain how to calculate these. The fundamental importance of the phonons, their dispersion relations, their experimental determination as well as their calculation is elucidated, followed by the systematic construction of the thermodynamic potentials on this basis. Subsequently, we provide an introduction for practical computation as well as a critical analysis of the level of accuracy obtainable. We then show how different solid‐state chemistry problems can be solved using this approach. Among these are the calculation of activation energies in perovskite‐like oxides, but we also consider the use of theoretical vibrational frequencies for determining crystal structures. The pressure and temperature polymorphism of elemental tin which has often been classically described is also treated, and we energetically classify the metastable oxynitrides of tantalum. We also demonstrate, using the case of high‐temperature superconductors, that such calculations may be used for an independent evaluation of thermochemical data of unsatisfactory accuracy. Finally, we show the present limits and the future challenges of the theory.  相似文献   

7.
The gaseous PVTx properties of ethyl fluoride (HFC-161) + 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) mixtures were measured at temperatures from 318.180 to 403.205 K and corresponding pressures from 961.3 to 3129.8 kPa using the isochoric method. The uncertainties in the present measurements were estimated to be ±1.5 kPa for pressure and ±6 mK for temperature. On the basis of the experimental PVTx property data, a truncated virial equation of state was developed for the binary HFC-161/227ea system. This equation reproduced the experimental data in the gas phase within ±0.164% in pressure and within ±0.178% in density.  相似文献   

8.
The minimum energy path (MEP) of the reaction, CF3CHFCF3 + H → transition state (TS) → CF3CFCF3 + H2, has been computed at different ab initio levels and with density functional theory (DFT) using different functionals. The computed B3LYP/6‐31++G**, BH&HLYP/cc‐pVDZ, BMK/6‐31++G**, M05/6‐31+G**, M05‐2X/6‐31+G**, UMP2/6‐31++G**, PUMP2/6‐31++G**//UMP2/6‐31++G**, RCCSD(T)/aug‐cc‐pVDZ//UMP2/6‐31++G**, RCCSD(T)/aug‐cc‐pVTZ(spd,sp)//UMP2//6‐31++G**, RCCSD(T)/CBS//M05/6‐31+G**, and RCCSD(T)/CBS//UMP2/6‐31++G** MEPs, and associated gradients and Hessians, were used in reaction rate coefficient calculations based on the transition state theory (TST). Reaction rate coefficients were computed between 300 and 1500 K at various levels of TST, which include conventional TST, canonical variational TST (CVT) and improved CVT (ICVT), and with different tunneling corrections, namely, Wigner, zero‐curvature, and small‐curvature (SCT). The computed rate coefficients obtained at different ab initio, DFT and TST levels are compared with experimental values available in the 1000–1200 K temperature range. Based on the rate coefficients computed at the ICVT/SCT level, the highest TST level used in this study, the BH&HLYP functional performs best among all the functionals used, while the RCCSD(T)/CBS//MP2/6‐31++G** level is the best among all the ab initio levels used. Comparing computed reaction rate coefficients obtained at different levels of theory shows that, the computed barrier height has the strongest effect on the computed reaction rate coefficients as expected. Variational effects on the computed rate coefficients are found to be negligibly small. Although tunneling effects are relatively small at high temperatures (~1500 K), SCT corrections are significant at low temperatures (~300 K), and both barrier heights and the magnitudes of the imaginary frequencies affect SCT corrections. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The thermophysical properties of 1-hexyl-3-methyl imidazolium based hydrophobic room temperature ionic liquids (RTILs); with tetrafluoroborate (BF4), hexafluorophosphate (PF6), and bis(trifluoromethylsulfonyl)imide (Tf2N) anions, namely density ρ (298.15 to 348.15) K, dynamic viscosity η (288.2 to 348.2) K, surface tension σ (298.15 to 338) K, and refractive index nD (302.95 to 332.95) K have been measured. The coefficients of thermal expansion αp values were calculated from the experimental density data using an empirical correlation. The thermal stability of all ILs is also investigated at two different heating rates (10 and 20) °C · min−1) using thermogravimetric analyzer (TGA). The experimental results presented in this study reveal that the choice of anion type shows the most significant effect on the properties of ILs. The chloride and water contents of ILs (as impurities) are also investigated and reported in the present work.  相似文献   

10.
The heat capacity of olivine-type lithium iron phosphate (LiFePO4 – LFP) has been measured covering a temperature range from (2 to 773) K. Three different calorimeters were used. The Physical Property Measurement System (PPMS) from Quantum Design was applied in the range between T = (2 and 300) K, a Micro-DSC II from Setaram within the range between T = (283 and 353) K and data between T = (278 and 773) K were measured by means of a Sensys DSC (Setaram) using the Cp-by-step method. Experimental data are given with an error of (1 to 2)% above T = 20 K and up to 8% below 20 K. The data were subdivided into appropriate temperature intervals and fitted using common heat capacity functions. The low temperature results permit the calculation of standard entropies and temperature coefficients of electronic, lattice, as well as magnetic (antiferromagnetic transition at T = 49.2 K) contributions to the heat capacity. The obtained experimental values were compared to results of a recently published first principles phonon study (DFT) and to few available experimental data from the literature.  相似文献   

11.
Reliable thermochemical measurements and theoretical predictions for reactions involving large transition metal complexes in which long-range intramolecular London dispersion interactions contribute significantly to their stabilization are still a challenge, particularly for reactions in solution. As an illustrative and chemically important example, two reactions are investigated where a large dipalladium complex is quenched by bulky phosphane ligands (triphenylphosphane and tricyclohexylphosphane). Reaction enthalpies and Gibbs free energies were measured by isotherm titration calorimetry (ITC) and theoretically ‘back-corrected’ to yield 0 K gas-phase reaction energies (ΔE). It is shown that the Gibbs free solvation energy calculated with continuum models represents the largest source of error in theoretical thermochemistry protocols. The (‘back-corrected’) experimental reaction energies were used to benchmark (dispersion-corrected) density functional and wave function theory methods. Particularly, we investigated whether the atom-pairwise D3 dispersion correction is also accurate for transition metal chemistry, and how accurately recently developed local coupled-cluster methods describe the important long-range electron correlation contributions. Both, modern dispersion-corrected density functions (e.g., PW6B95-D3(BJ) or B3LYP-NL), as well as the now possible DLPNO-CCSD(T) calculations, are within the ‘experimental’ gas phase reference value. The remaining uncertainties of 2–3 kcal mol−1 can be essentially attributed to the solvation models. Hence, the future for accurate theoretical thermochemistry of large transition metal reactions in solution is very promising.  相似文献   

12.
The van der Waals gradient theory (vdW GT) is used to calculate surface tension, density profiles, adsorption, the Tolman length and to determine the position of dividing surfaces in the liquid–gas interface of an oxygen–nitrogen solution. The Helmholtz energy density (HED) is determined via an equation of state (EOS), unified for a liquid and gas, which describes stable, metastable and two-phase states of solutions. The influence parameters are calculated from data on the surface tension of pure components with the use of the mixing rule. At temperatures T > 100 K the vdW GT describes experimental data on the surface tension of oxygen–nitrogen solutions [V.G. Baidakov, A.M. Kaverin, V.N. Andbaeva, The liquid–gas interface of oxygen–nitrogen solutions: 1. Surface tension, Fluid Phase Equilib. 270 (2008) 116–120] within the experimental error. It is shown that the Tolman length, which determines the dependence of surface tension on the curvature of the dividing surface, depends considerably on the solution concentration.  相似文献   

13.
In this work, we have calculated rate constants for the tropospheric reaction between the OH radical and -dimethoxyfluoropolyethers. The latter are a specific class of the hydrofluoropolyethers family with the general formula , from which we have selected three case studies: , , and . The calculations were performed by applying a cost-effective protocol developed for bimolecular hydrogen-abstraction reactions and based on multiconformer transition state theory relying on computationally accessible M08-HX/apcseg-2//M08-HX/pcseg-1 calculations. Within the protocol's uncertainties and approximations, the results show that (1) the calculated rate constants have the same order of magnitude and (2) if observed together with previous experimental and theoretical investigations, the chain length (that varies with q and p) is seen to have a small effect on the rate constant, which is consistent with the “no discernible effect” reported in the experimental work.  相似文献   

14.
The multiple-channel reactions Br + CH(3)SCH(3) --> products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6-31+G(d,p) level, and energetic information is further refined by the G3(MP2) (single-point) theory. The rate constants for every reaction channels, Br + CH(3)SCH(3) --> CH(3)SCH(2) + HBr (R1), Br + CH(3)SCH(3) --> CH(3)SBr + CH(3) (R2), and Br + CH(3)SCH(3) -->CH(3)S + CH(3)Br (R3), are calculated by canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200-3000 K. The total rate constants are in good agreement with the available experimental data, and the two-parameter expression k(T) = 2.68 x 10(-12) exp(-1235.24/T) cm(3)/(molecule s) over the temperature range 200-3000 K is given. Our calculations indicate that hydrogen abstraction channel is the major channel due to the smallest barrier height among three channels considered, and the other two channels to yield CH(3)SBr + CH(3) and CH(3)S + CH(3)Br are minor channels over the whole temperature range.  相似文献   

15.
The standard (p = 0.1 MPa) molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids were derived from their standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of 2- and 3-cyanobenzoic acids. The standard molar enthalpies of formation of the three compounds, in the gaseous phase, at T = 298.15 K, have been derived from the corresponding standard molar enthalpies of formation in the condensed phase and standard molar enthalpies for phase transition. The results obtained are −(150.7 ± 2.0) kJ · mol−1, −(153.6 ± 1.7) kJ · mol−1 and −(157.1 ± 1.4) kJ · mol−1 for 2-cyano, 3-cyano and 4-cyanobenzoic acids, respectively. Standard molar enthalpies of formation were also estimated by employing two different methodologies: one based on the Cox scheme and the other one based on several different computational approaches. The calculated values show a good agreement with the experimental values obtained in this work.  相似文献   

16.
Abstract

Relative permittivities (E 12) have been measured for 2-metoxyethanol (ME)-tetrahydrofuran (THF) binary liquid mixtures over the whole compositions range at various temperatures ranging from 291.15 K to 308.15 K. The experimental data were used to test some empirical equations of the type: y 12 = y 12(t) and y 12 = y 12 (X 1) [where: y 12-E 12]. From all these data, the temperature coefficients of relative permittivities (α12) and the excess extrathermodynamic parameters εE were calculated. The 1H-NMR spectra of liquid binary mixtures of ME and THF, were recorded at 298 K over almost the whole range of the mixed solvent compositions. From these data the values of the values of the spectral structural parameters were found, δδ(ME-THF). These structural parameters as a function concentration suggest the formation of stable 3ME.THF types intermolecular complexes.  相似文献   

17.
The reactions of Ln(NO3)3 with 1,4‐phenylenediacetic acid (H2PDA) under hydrothermal conditions produced two isostructural lanthanide coordination polymers with the empirical formula [Ln2(PDA)3(H2O)] · 2H2O [Ln = Nd ( 1 ), Sm ( 2 )]. Single‐crystal X‐ray diffraction analyses revealed that both contain one‐dimensionalmetal carboxylato chains, which are further connected by the–CH2C6H4CH2– spacers of PDA2– ligands to yield a three‐dimensional metal‐organic framework. Magnetic susceptibilities of 1 and 2 were measured. The experimental χmT value of both compounds decreases continuously with decreasing temperature over the whole temperature range. The best least‐squares fit of the experimental data of 1 to a theoretical equation in the temperature range of 70–300 K gives the zero‐field splitting parameter Δ = 2.21 cm–1 and the magnetic interaction between the NdIII ions 2zJ′ = –1.97 cm–1, which indicates the presence of antiferromagnetic interaction between the NdIII ions. The experimental χmT value of 2 at 2 K is much smaller than the expected value for two free SmIII ions (6H5/2, g = 2/7) in the ground state, indicating that an antiferromagnetic interaction possibly exists between SmIII ions at low temperature. Fitting the magnetic data of 2 above 110 K based on an equation deduced from the SmIII ion in a monomeric system with free‐ion approximation gave a spin‐orbit coupling parameter λ = 192(2) cm–1  相似文献   

18.
TrichlorosilaneisanimportantmaterialinplasmaChemicalVaporDeposition (CVD)andinsemiconductordeviceprocess .1 4 Thereactionoftrichlorosilanewithatomichydrogen ,thesimplestfree radicalspecies,hasdrawnconsiderableattention :kineticparametersforH atomreactionared…  相似文献   

19.
Short chain alcohols such as ethanol and methanol were used for extraction of oleic acid from sunflower oil. (Liquid + liquid) equilibrium data for the systems (sunflower oil + oleic acid + methanol) and (sunflower oil + oleic acid + ethanol) at T = (303.15 and 313.15) K are reported. The experimental (liquid + liquid) equilibrium data were satisfactorily correlated using the UNIQUAC activity coefficient model to obtain the binary interaction parameters. The experimental and calculated compositions of the equilibrium phases were compared and the relative mean square deviations (RMSD) are reported. The partition coefficients and the selectivity factor of the methanol and ethanol were calculated and presented. The experimental results indicate that increasing the temperature increases the distribution coefficient but decreases the selectivity factor. Our experimental results indicate that a possible alternative to reduce energy consumption is de-acidification of sunflower oil through liquid–liquid extraction by short chain alcohols, as this process is carried out at room temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号