首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly (4-vinyl phenol) (P4VPh) gels were prepared by crosslinking with a hydrophilic crosslinker [ethyleneglycoldiglycidylether (EGDGE)] and a hydrophobic one [diglycidyl 1,2-cyclohexane dicarboxylate (DGCHDC)], and the former gel was further modified by CH3I or C2H5I to partially convert the hydrogen of phenol OH to the corresponding alkyl groups. Swelling behaviors of P4VPh gels, thus modified, were investigated to see how the hydrophobic groups introduced to the crosslinker and the polymer substrate affect the super salt resistivity to inorganic ions and the high water content (>90%) that have been observed for the original P4VPh gel. Water content and salt resistivity were unexpectedly preserved even for the modified gels. Effects of the chemical modifications on the gel swelling were only observed in the presence of hydrophobic solutes, i.e., tetrabutyl ammonium chloride and ionic surfactants. All these results strongly suggest that hydration around the polymer substrate in the gel phase is specifically stabilized, probably because of the coexistence of the hydrophobic hydration and the π-hydrogen-bonding hydration around the phenol ring.  相似文献   

2.
Swelling degrees of partially quaternized poly(4-vinyl pyridine) (p.q.P4VP) were measured as functions of the degree of quaternization (D.Q.: 5, 10, 15, 30, and 50 mol%), salt concentration (0–4 M), and salt species (KF, LiCl, NaCl, KCl, CsCl, MgCl2, KBr, LiSCN, KSCN, Na2SO4, and MgSO4) to study ion effects on the three kinds of interactions involved with p.q.P4VP in aqueous systems, i.e., electrostatic interaction, hydrogen bonding to the nitrogen of the pyridine ring, and hydrophobic interaction, as well as to estimate the relative contributions of the respective ion effects to gel swelling. Upon addition of salts at the lowest salt concentration studied (0.01 M), p.q.P4VP gels, except for one with D.Q.=10%, significantly deswelled depending on the counterion species; the lowest swelling degree was observed for the thiocyanates and the highest one for KF. In the higher salt concentration region (≧1 M) where electrostatic interactions might well be screened, however, some salt systems (e.g., LiCl, KSCN) showed swelling with increased salt concentration, contrary to the common behavior of usual ionic gels. These ion-specific swelling behaviors were interpreted as being caused by additive ionic effects on the three kinds of interactions.  相似文献   

3.
Swelling behaviors of poly(4-vinyl phenol) (P4VPh) gel in aqueous tetraalkylammonium chloride (TAACl) solutions were investigated to find a very specific swelling behavior. Especially for the tetrabutylammonium chloride (TBACl) system, P4VPh gel remarkably deswelled with increasing salt concentration (/= ca. 2.1 M). A similar swelling profile was also observed in the swelling time-course; upon immersion of a water-swollen P4VPh gel into 2.5 M TBACl solution, the gel first deswelled in an early stage (approximately 0.1 h) and then remarkably reswelled with time. Relative amounts (mol/mol) of TBA cation and water per monomer residue were estimated as ca. 1 and 0 for the deswollen state and 5 and 50 for the reswollen state, respectively. This result, together with those of attenuated total reflection Fourier transform infrared measurements performed for the gels swollen in various kinds of TAACl and inorganic salt solutions, suggested that in the highly deswollen and almost dehydrated state, phenol rings aggregated with intervening TBA cations, while the aggregation reswelled upon further binding with TBA cations.  相似文献   

4.
Anti-Hofmeister series properties have been found for a polymer (PVA-T) having a π electron system and acidic protons, which were prepared by introducing trimellitic anhydride to poly(vinyl alcohol) (PVA). Aqueous dispersion of PVA-T became clear in the presence of 1 M Na2SO4, a typical kosmotrope, due to dissolution of the solid polymer sample, while the turbidity in the presence of 1 M KSCN, a typical chaotrope, hardly changed. Being consistent to the salt effects, PVA-T hydrogel, which was prepared by chemical cross-linking, showed marked swelling in sulfate solutions, whereas the swelling degree was only marginal in thiocyanates.  相似文献   

5.
The effect of salts KSCN, KI, KBr, KCl, KClO4, KF, K2SO4 and NH4Cl, LiCl, NaCl, KCl, CsCl on the binodials of the phase diagrams for aqueous biphasic dextranpolyvinylpyrrolidone, dextran-polyvinyl alcohol, dextran-ficoll and dextran-polyethylene glycol systems was studied. It is established that the K-salts present at the concentrations of 0.1 and 0.5 mol/kg alter the binodials of the phase diagrams for the above systems. The effect of a salt is found to be related to the lyotropy of the salt quantified by the salt molal surface tension increment. It is assumed that phase separation in an aqueous polymer biphasic system is affected by the presence of a salt mainly due to the effect of the salt on the structure and/or state of water in the system.  相似文献   

6.
Binding behaviors of ionic surfactants (decyl- and dodecyltrimethylammonium bromide (C(10)TAB, C(12)TAB), sodium decane sulfonate (SDeSo), and sodium dodecyl sulfate (SDS)) to poly(4-vinyl phenol) (P4VPh) gel were investigated to elucidate a specific swelling behavior that has been found for P4VPh gel in aqueous solutions of tetraalkylammonium salts. With increasing cationic surfactant concentration, P4VPh gel significantly deswelled and then remarkably reswelled at a concentration somewhat below the respective cmc values. On the other hand, in the case of the anionic surfactants, the gel only showed a marked swelling at a concentration just below the respective cmc values. A similar charge-specific behavior of the surfactants was also found for the P4VPh dispersion system studied with a UV-vis spectroscopy; namely, in the cationic surfactant-P4VPh systems, the turbidity of the dispersion first increased with increasing the surfactant concentration and then decreased. This result suggests that aggregation of P4VPh particles first occurred and finally the particles were solubilized. A red shift followed by a blue shift observed for a pi-pi absorption of phenol at around 278 nm was also consistent with the aggregation-solubilization behavior. In the anionic surfactant-P4VPh system, however, only solubilization of the polymer particle was observed, and the UV peak only showed a blue shift. All these results in the gel and the dispersion systems strongly suggest that the cation-pi interaction is involved in the binding of the cationic surfactants to P4VPh.  相似文献   

7.
Water properties in the super-salt-resistive gel probed by NMR and DSC   总被引:1,自引:0,他引:1  
The so-called "super-salt-resistive gel", or poly(4-vinylphenol) (P4VPh) hydrogel, of different water contents ( H = 97-51%) was prepared by cross-linking with different amounts of ethylene glycol diglycidyl ether. 1H NMR spectroscopy was used to investigate the dynamic properties of water in the gel samples in terms of the spin-spin relaxation. The T2 values in those hydrogels were analyzed by assuming a two-component system, namely, T 2(long) and T2(short), and their fractions were obtained. In the higher water content region (75% < or = H < or = 97%), T2(long) for P4VPh gel was almost constant or even slightly increased with decreasing temperature. On the other hand, T2(long) for poly(vinyl alcohol) (PVA) gel (80% < or = H < or = 96%) significantly decreased with decreasing temperature, showing a natural behavior for water mobility in common hydrogels. Water in P4VPh gels of lower water contents ( H = 70% and 51%) also showed intriguing behaviors: the T2 values are much larger than those of gels with higher water contents and decreased with decreasing temperature only in the lower temperature range (<10 degrees C). The fraction of T2(long) values of P4VPh gel showed another contrast to those of PVA gel; the latter decreased with decreasing water content (normal behavior), while in the former gel the highest fraction (ca. 60% at 20 degrees C) was observed for a sample with the lowest water content ( H = 51%). On the other hand, the results of DSC measurements for P4VPh gel were less specific than those of T2 and comparable to those of common hydrogels such as PVA; with decreasing water content, the total amounts of free water and freezable bound water per polymer mass (g/g) decreased, while the amount of nonfreezing water per polymer also decreased.  相似文献   

8.
The swelling behavior of polyelectrolyte gels based on poly(diallyldimethylammonium chloride) (copolymers of diallyldimethylammonium chloride and acrylamide with the variable composition) and poly(methacrylic acid, sodium salt) in the presence of organic water soluble dyes (alizarin, naphthol blue black, rhodamine) was studied. The collapse of the polyelectrolyte gels in the presence of oppositely charged dyes together with the effective absorption of dyes was observed. The shrinking degree and the dye absorption by the gel depend on the charges of the polymer network and the dye, and also on the dye concentration. Stability of the gel–dye complexes in a salt solution of NaCl and Al2(SO4)3 was studied. It was shown that the complex stability in the salt solution depends on the charge density of the polymer chains forming the gel. The increase of charge density of polymer generally leads to the enhancement of the complex stability. For the systems with the fraction of charged poly(diallyldimethylammonium chloride) monomer units above 0.5 the release of alizarin to the external solution of Al2(SO4)3 reservoir is practically completely suppressed. The obtained results show that oppositely charged dyes are generally from stable complexes with polyelectrolyte gels. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1209–1217, 1999  相似文献   

9.
Dissolution of cellulose in ethylenediamine/potassium thiocyanate (KSCN) was studied as a function of cellulose and KSCN concentration. Concentrations of up to 9% (w/w) cellulose were obtained. Large variations in solution rheology with salt and cellulose concentration were observed, and phases including flowing solutions and gels were identified visually. Rheological data indicated that viscosity decreased with increasing salt or cellulose concentration in certain composition ranges. Viscosity decrease with concentration increase is associated with either onset of liquid crystalline ordering or phase separation in the system. Both of these are quite likely in the cellulose/ethylenediamine/KSCN system, depending on composition. Additionally, comparison of loss (G′′) and storage (G′) moduli confirmed that compositions that exhibited gel behavior at zero shear became liquid at shear rates as low as 1 Hz. Solutions were coagulated into filaments and films using ethanol (CH3CH2OH) and methanol (CH3OH). Infrared spectroscopy (FTIR) indicated that significant quantities of KSCN salt remained in the fibers and films after coagulation. Subsequent washing removed residual KSCN and improved physical properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2013–2022, 2005  相似文献   

10.
In this paper, a separation method of radionuclides (Ba, Sr) from LiCl salt wastes generated from the electroreduction process of spent nuclear fuel was studied to recover pure LiCl salts and reduce radioactive wastes. The method consisted of chemical conversion process of BaCl2 and SrCl2 in LiCl molten salts by using lithium compounds and vacuum distillation process of LiCl salts. In the chemical conversion, BaCl2 and SrCl2 in LiCl molten salts were mainly converted into (Ba,Sr)CO3 or (Ba,Sr)SO4. Contents of Ba and Sr in LiCl salts recovered from the vacuum distillation process were equal to about 0.01 of initial concentrations of Ba and Sr in LiCl molten salts. These results will be utilized to recycle the LiCl salt wastes.  相似文献   

11.
Most of the hydrogels deswell more remarkably in F containing solutions than in other monovalent anion containing solutions. However, significant deswelling followed by abnormal reswelling of polymer gel in KF solutions with increasing F concentration was observed in a series of polymer gels consisted of phenyl rings, for instance, poly(styrene sulfonic acid) (PSSA), hydroxypropyl methylcellulose phthalate (HPMCP) and poly(4-vinyl phenol) (P4VPh) gel. Driving force of this phenomenon was studied to reveal the specific interactions involved in the aqueous systems of aromatic polymers. Elemental analysis and XPS results suggest that F is embedded to the gel by the physical adsorption of KF, as well as the interactions between phenyl ring and F. Further theoretical calculations revealed that the interaction may be (phenyl)CH?F(H2O)n interaction, which is stronger than (phenyl)CH?(H2O)n hydrogen bond. This kind of interaction decreases with the increasing water number and it is invalid when the surrounding water number is more than 5 for the phenol-F(H2O)n system. Therefore, we conclude that F could bind to phenyl ring via such (phenyl)CH?F(H2O)n interaction in solutions with low hydrophilicity. The strong polarization effect of F and (phenyl)CH?F(H2O)n interaction are two important driving forces for the reswelling of gels.  相似文献   

12.
Summary It has been noted in the literature that certain salts enter into specific interaction with proteins. As a result of this, they may act as salting-in agents. We have investigated the effect of magnesium chloride which is known to possess such unusual properties on the retention of proteins in hydrophobic-interaction chromatography. First the retention behaviour of amino acids and small peptides having a wide polarity range was studied on reversed-phase columns using eluents containing (NH4)2SO4, MgSO4 or MgCl2, in wide the concentration ranges. For less polar eluites plots of the logarithmic retention factors against the salt concentration were found to be linear, whereas the more polar species showed irregular behavior. The retention of a wide range of proteins was measured on a TSK Phenyl-5-PW column using eluents containing (NH4)2SO4, MgSO4 or MgCl2 at different concentrations.The salt-mediated retention was regular with (NH4)2 SO4 and MgSO4 although MgSO4 showed a lesser effect than that predicted by the surface-tension increment. The effect of MgCl2 was quite irregular: the retention factors either increased or decreased or remained unchanged depending on the protein. These results corroborate earlier observations regarding the particular effect of MgCl2 and suggest the modulation of selectivity in hyrophobic-interaction chromatography by the addition of MgCl2 to the eluent.  相似文献   

13.
We produced gels using electrolytic-reduction ion water and magnesium aluminum silicates (smectone®), and evaluated in detail gel properties in the presence of various types of salt (NaCl, KCl, CaCl2, MgCl2, and AlCl3). Each salt was added to deionized-distilled water or electrolytic-reduction ion water, and phase diagrams for the smectone® concentration (2.0–4.0%) were produced. The areas of the three phases of smectone® (gel, sol, and separation) at each salt concentration were expressed as percentages of the total area. As a result, uni- and polyvalent cations (excluding Ca2+ ions) affected the stability of gels produced using electrolytic-reduction ion water, and, particularly, univalent cations (Na+, K+) markedly improved gel stability.Using electrolytic-reduction ion water as a dispersal medium, drug delivery systems (DDS) that can maintain the gelling state can be prepared. Thus, gel preparations with maintained functions or controlled-release transdermal drugs can be obtained.  相似文献   

14.
The effects of inorganic mono- and divalent salts of different types on how the cation polyelectrolyte polyallylamine hydrochloride (PAA) binds with the oligomer enzyme urease were studied. It was shown that in solutions of the monovalent salts NaCl, KCl, and NH4Cl, polyelectrolyte-protein complexes formed by electrostatic interactions, which decreased monotonically as the salt concentrations increased according to the classic law of statistical physics, correlating the Debye radius with the ionic strength of the solution. In solutions of the divalent salts Na2SO4 and (NH4)2SO4, the efficiency of the formation of the polyelectrolyte-protein complexes changed abruptly (the enzyme was drastically activated) at low salt concentrations (∼0.6–0.8 mM), which was not consistent with the classic theory of charge interactions in solutions with different ionic strengths. Turbidimetric titration at different salt concentrations in the given range revealed a high aggregative ability for sulfates and low ability for chlorides. It was concluded that the anomalies in the concentration dependence of the enzyme activity and aggregative ability were related to the formation of stable bonds PAA to the divalent SO42− anion, which increased drastically when the ratio of anion concentration to the number of positively charged PAA monomers in solution reached 1: 2.  相似文献   

15.
Component solubility in HCl-LiCl-MgCl2-H2O system of high ionic strength at 20℃ was predicted by using the Pitzer's ion-interaction model. The results indicated that the model supplied a very good prediction of the component solubility of the system mentioned above. The values of parameters of β^0, β^1 and C^* of HCl, LiCl and MgCl2 were obtained from optimization of literature data, while those of θMN and ψMNX were calculated from a least-squares optimization procedure to couple activity coefficient with solubility data. According to the ion-interaction model, no additional parameters need to be determined for more complex systems. The study provided theoretical basis for the manufacture process, which was proposed by Gao and employed to extract LiCl and MgCl2·6H2O from salt lake brine.  相似文献   

16.
Series of maleate monoester and diester monomers based on poly(ethylene glycol) monomethyl ether (MPEG) were copolymerized using the ionizable 2‐acrylamido‐2–methyl propane sulfonic acid (AMPS) via different dose rate of electron‐beam irradiation (40–150 kGy). The crosslinking of the copolymers were carried out in aqueous acidic solutions at pH 1 or in the presence of 1% N,N‐methylene bisacrylamide (MBA) as crosslinking agent. The final equilibrium water content and swelling capacities for the prepared hydrogels were determined in aqueous solutions at pH 1, 6.8, and 12 and in aqueous salt solutions at 298 K. Swelling equilibria for prepared hydrogels were determined in different molar salt solutions of NaCl, KCl, CaCl2, Na2SO4, K2SO4, and CaSO4. The swelling ratios of gels in pure water and in the salt solutions were found to depend on the counterion species in the increasing sequence of Ca2+, Na+ and K+. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, the influence of the sample pan on the thermal behaviour of potassium thiocyanate (KSCN) was investigated. The measurements were performed with thermogravimetry (TG) and the two sample pans used were a platinum pan and a ceramic crucible. The samples were heated to 400-950 °C and the thermal products were identified by powder diffraction.The thermal behaviour of KSCN was found to be dependent on the sample pan used. With the platinum sample pan KSCN reacted in the first step into a mixture of K2SO4 and potassium tetracyanoplatinate (K2Pt(CN)4). In the second step, the mixture reacted further to pure K2SO4. In the ceramic sample crucible, however, the reaction in the first step resulted in a mixture of K2SO4 and KOCN. In the second step, the mixture reacted further to pure K2SO4.The results were verified with additional measurements of rubidium thiocyanate (RbSCN) and cesium thiocyanate (CsSCN). The reactions of these compounds proved to be similar to those of KSCN, thereby confirming that the thermal behaviour of the alkali metal thiocyanates mentioned in this study, depends on the sample pan used.  相似文献   

18.
Phase equilibria in the LiCl–LiBr–Li2SO4 ternary system and the LiCl–LiBr–Li2SO4–Li2MoO4 quaternary system were studied by differential thermal analysis. The compositions and temperatures of minima in the ternary and quaternary systems were determined to be (31.2 mol % LiCl, 46.8 mol % LiBr, 22.0 mol % Li2SO4, 460°C) and (25.2 mol % LiCl, 30.2 mol % LiBr, 14.6 mol % Li2SO4, 30.0 mol % Li2MoO4, 411°C), respectively.  相似文献   

19.
The effect of inorganic salts, non-transition metal chlorides, on the dose sensitivity of methacrylic-acid-based polymer gel dosimeter is investigated. Dose-R2 responses are obtained from magnetic resonance imaging data. Temperature increase due to exothermic polymerization reaction in the gel is also measured directly during irradiation. As a result, substantial increases in R2 response are observed in the polymer gel dosimeter containing inorganic salt, especially with MgCl2. The sensitivity of the gel with 1.0 M MgCl2 is approximately 2.8 times higher than that of without MgCl2. As the salt concentration increases, an increase of polymerization rate is also observed via the temperature measurements. These results indicate that inorganic salt acts as an accelerator for radiation-induced free-radical polymerization in methacrylic-acid-based gel.  相似文献   

20.
Three kinds of the 1:1 Ni(dmit)2 salts with 4-(4-pyridyl)pyridinium (PP), 4-[2-(4-pyridyl)ethenyl]pyridinium (P=P), and 4-[2-(4-pyridyl)ethyl]pyridinium (P-P) cations have been prepared and structurally characterized. All of these crystals are composed of a multi-dimensional network of the Ni(dmit)2 anions and the hydrogen-bonding one-dimensional cation chains. Compared with tight hydrogen bonds in the P=P and P-P chains, that in the PP chain is rather loose. The P=P and P-P salts show semiconducting behavior with high resistivity and large activation energy, while the PP salt shows the op-posite temperature dependence with low resistivity at high temperature. The thermoelectric power indicates that the PP salt is an n-doped semiconductor. The proton defects may occur in the loosely bound PP chain which results in the carrier doping in the conduction band formed by the π-π interaction of the Ni(dmit)2 anion radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号