首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the homogenization of evolution equations such as:
where the coefficient a is -periodic and takes very high values on a subset TΩ (fibered structure) of very small measure. We find a non-local effective equation deduced from a homogenized system of several equations. To cite this article: M. Bellieud, C. R. Mecanique 330 (2002) 843–848.  相似文献   

2.
3.
Within the context of turbojet engine re-ignition after in-flight extinction, a thermo-diffusive model has been developed to describe the electrical ignition, at low pressure and low temperature, of a cluster of fuel droplets. The model involves the resolution of the conservation equations of mass, species and energy. It also takes into account the various physical and chemical phenomena occurring during the ignition process. This Note presents the ignition model and preliminary results of this model applied to an experimental configuration. To cite this article: V. Quintilla et al., C. R. Mecanique 330 (2002) 811–818.  相似文献   

4.
This Note is devoted to the experimental verification of the Onsager's reciprocal relations in the particular case of electro-osmosis and electro-filtration. A special set up has been designed to carry out the measurements of both the electro-osmotic permeability and the streaming potential. This has been performed by using a natural material i.e., saturated kaolinite. To cite this article: K. Beddiar et al., C. R. Mecanique 330 (2002) 893–898.  相似文献   

5.
Very different materials are named ‘Glass’, with Young's modulus E and Poisson's ratio ν extending from 5 to 180 GPa and from 0.1 to 0.4, respectively, in the case of bulk inorganic glasses. Glasses have in common the lack of long range order in the atomic organization. Beside the essential role of elastic properties for materials selection in mechanical design, we show in this analysis that macroscopical elastic characteristics (E,ν) provide an interesting way to get insight into the short- and medium-range orders existing in glasses. In particular, ν, the packing density (Cg) and the glass network dimensionality appear to be strongly correlated. Networks consisting primarily of chains and layers units (chalcogenides, low Si-content silicate glasses) correspond to ν>0.25 and Cg>0.56, with maximum values observed for metallic glasses (ν0.4 and Cg>0.7). On the contrary, ν<0.25 is associated to a highly cross-linked network with a tri-dimensional organization resulting in a low packing density. Moreover, the temperature dependence of the elastic moduli brings a new light on the ‘fragility’ of glasses (as introduced by Angell) and on the level of cooperativity of atomic movements at the source of the deformation process. To cite this article: T. Rouxel, C. R. Mecanique 334 (2006).  相似文献   

6.
We consider the problem of solving the integral form of the radiative transfer equation in an atmosphere with optical thickness τ01. We propose a method transforming this problem in the same problem posed in an atmosphere with optical thickness τ1τ0. An error over- estimation is derived. To cite this article: A. Amosov et al., C. R. Mecanique 331 (2003).  相似文献   

7.
Three localisation rules, TFA, the incremental tangent, and the affine method, are recalled and evaluated in the context of the elastoplastic micromechanical analysis of heterogeneous materials, composites or polycrystals. With the help of a severe example, it is shown how methods based on the complete anisotropic elastoplastic tangent operator yield very stiff predictions which are far from the reference solution; the same conclusion holds for the method using the elastic accommodation rule. On the other hand, using an isotropic form of the tangent operator delivers much better responses. The reasons for such differences are discussed, together with possible justifications for the choice of the isotropic form. To cite this article: J.-L. Chaboche, P. Kanouté, C. R. Mecanique 331 (2003).  相似文献   

8.
Steady laminar forced convection gaseous slip-flow through parallel-plates micro-channel filled with porous medium under Local Thermal Non-Equilibrium (LTNE) condition is studied numerically. We consider incompressible Newtonian gas flow, which is hydrodynamically fully developed while thermally is developing. The Darcy–Brinkman–Forchheimer model embedded in the Navier–Stokes equations is used to model the flow within the porous domain. The present study reports the effect of several operating parameters on velocity slip and temperature jump at the wall. Mainly, the current study demonstrates the effects of: Knudsen number (Kn), Darcy number (Da), Forchheimer number (Γ), Peclet number (Pe), Biot number (Bi), and effective thermal conductivity ratio (K R) on velocity slip and temperature jump at the wall. Results are given in terms of skin friction (C f Re *) and Nusselt number (Nu). It is found that the skin friction: (1) increases as Darcy number increases; (2) decreases as Forchheimer number or Knudsen number increases. Heat transfer is found to (1) decreases as the Knudsen number, Forchheimer number, or K R increases; (2) increases as the Peclet number, Darcy number, or Biot number increases.  相似文献   

9.
Dispersion and attenuation of longitudinal waves in elastic or weakly viscoelastic rods are measured by analysing the resonant frequencies present in the strain spectrum due to an unknown loading. The method takes the finite measuring time of the test into account. It is applied to an aluminium bar, in which the dispersion relation is identified very accurately at frequencies up to 60 kHz. To cite this article: R. Othman et al., C. R. Mecanique 330 (2002) 849–855.  相似文献   

10.
A discrete model of a woven fabric structure is established, whereby nodes endowed with a mass and a rotational rigidity are connected by rigid bars to form a two-dimensional truss. The set of four bars that delineate a quadrilateral area is further endowed with a torsion deformation mode. The kinematics of the truss reproduces the large rotations and displacements encountered for real tissues. The equilibrium shape of such a structure is obtained as the minimum of its total potential energy versus the whole set of kinematic translational and rotational variables, accounting for eventual kinematic constraints due to contact with a rigid surface by the Lagrange multipliers method. A stability analysis is conducted, and the potentiality of the model is illustrated by fabric draping simulations. To cite this article: B. Ben Boubaker et al., C. R. Mecanique 330 (2002) 871–877.  相似文献   

11.
The governing equation for Darcy-Forchheimer flow of non-Newtonian inelastic power-law fluid through porous media has been derived from first principles. Using this equation, the problem of Darcy-Forchheimer natural, forced, and mixed convection within the porous media saturated with a power-law fluid has been solved using the approximate integral method. It is observed that a similarity solution exists specifically for only the case of an isothermal vertical flat plate embedded in the porous media. The results based on the approximate method, when compared with existing exact solutions show an agreement of within a maximum error bound of 2.5%.Nomenclature A cross-sectional area - b i coefficient in the chosen temperature profile - B 1 coefficient in the profile for the dimensionless boundary layer thickness - C coefficient in the modified Forchheimer term for power-law fluids - C 1 coefficient in the Oseen approximation which depends essentially on pore geometry - C i coefficient depending essentially on pore geometry - C D drag coefficient - C t coefficient in the expression forK * - d particle diameter (for irregular shaped particles, it is characteristic length for average-size particle) - f p resistance or drag on a single particle - F R total resistance to flow offered byN particles in the porous media - g acceleration due to gravity - g x component of the acceleration due to gravity in thex-direction - Grashof number based on permeability for power-law fluids - K intrinsic permeability of the porous media - K * modified permeability of the porous media for flow of power-law fluids - l c characteristic length - m exponent in the gravity field - n power-law index of the inelastic non-Newtonian fluid - N total number of particles - Nux,D,F local Nusselt number for Darcy forced convection flow - Nux,D-F,F local Nusselt number for Darcy-Forchheimer forced convection flow - Nux,D,M local Nusselt number for Darcy mixed convection flow - Nux,D-F,M local Nusselt number for Darcy-Forchheimer mixed convection flow - Nux,D,N local Nusselt number for Darcy natural convection flow - Nux,D-F,N local Nusselt number for Darcy-Forchheimer natural convection flow - pressure - p exponent in the wall temperature variation - Pe c characteristic Péclet number - Pe x local Péclet number for forced convection flow - Pe x modified local Péclet number for mixed convection flow - Ra c characteristic Rayleigh number - Ra x local Rayleigh number for Darcy natural convection flow - Ra x local Rayleigh number for Darcy-Forchheimer natural convection flow - Re convectional Reynolds number for power-law fluids - Reynolds number based on permeability for power-law fluids - T temperature - T e ambient constant temperature - T w,ref constant reference wall surface temperature - T w(X) variable wall surface temperature - T w temperature difference equal toT w,refT e - T 1 term in the Darcy-Forchheimer natural convection regime for Newtonian fluids - T 2 term in the Darcy-Forchheimer natural convection regime for non-Newtonian fluids (first approximation) - T N term in the Darcy/Forchheimer natural convection regime for non-Newtonian fluids (second approximation) - u Darcian or superficial velocity - u 1 dimensionless velocity profile - u e external forced convection flow velocity - u s seepage velocity (local average velocity of flow around the particle) - u w wall slip velocity - U c M characteristic velocity for mixed convection - U c N characteristic velocity for natural convection - x, y boundary-layer coordinates - x 1,y 1 dimensionless boundary layer coordinates - X coefficient which is a function of flow behaviour indexn for power-law fluids - effective thermal diffusivity of the porous medium - shape factor which takes a value of/4 for spheres - shape factor which takes a value of/6 for spheres - 0 expansion coefficient of the fluid - T boundary-layer thickness - T 1 dimensionless boundary layer thickness - porosity of the medium - similarity variable - dimensionless temperature difference - coefficient which is a function of the geometry of the porous media (it takes a value of 3 for a single sphere in an infinite fluid) - 0 viscosity of Newtonian fluid - * fluid consistency of the inelastic non-Newtonian power-law fluid - constant equal toX(2 2–n )/ - density of the fluid - dimensionless wall temperature difference  相似文献   

12.
Experimental measurements of friction factor and heat transfer for the turbulent flow of purely viscous non-Newtonian fluids in a 21 rectangular channel are compared with results previously reported for the circular tube geometry. Comparisons are also made with available analytical and empirical predictions.It is found that the rectangular duct fully established friction factor measurements are within ± 5% of the Dodge-Metzner prediction if the Kozicki generalized Reynolds number is used. A modified form of the simpler explicit equation proposed by Yoo, [i.e.f=0.079n 0.675(Re *)–0.25], is found to yield predictions for both the rectangular duct and the circular tube geometries with approximately the same accuracy as the Dodge-Metzner equation.Fully developed Stanton numbers for the rectangular duct are in good agreement with the circular tube data over a range ofn from 0.37 to 0.88 for a given Prandtl number,Pr a , when compared at a fixed value of the Reynolds number based on the apparent viscosity evaluated at the wall shear stress. In general, the experimental data are within ± 20% of Yoo's equation,St=0.0152Re a –0.155 Pr a –2/3 . A new equation is proposed to bring the prediction for circular pipes as well as rectangular channels into better agreement with generally accepted Newtonian heat transfer results.
Wärmeübergang und Druckverlust für viskose nicht-Newtonsche Fluide in turbulenter Strömung durch rechteckige Kanäle
Zusammenfassung Es werden Messungen des Reibungsfaktors und des Wärmeübergangs bei turbulenter Strömung viskoser nicht-Newtonscher Fluide in einem rechteckigen Kanal mit dem Seitenverhältnis 21 verglichen mit früheren Ergebnissen, die an runden Rohren gewonnen wurden. Weiterhin werden Vergleiche mit aus der Literatur verfügbaren analytischen und empirischen Beziehungen gemacht.Es zeigte sich, daß die Messungen des Reibungsfaktors im rechteckigen Kanal bei vollausgebildeter Strömung auf ± 5% mit der Vorhersage von Dodge-Metzner übereinstimmen, wenn die von Kozicki verallgemeinerte Reynolds-Zahl verwendet wird. Eine modifizierte Form der einfachen von Yoo vorgeschlagenen einfachen Gleichung in explizierter Form (f=0,079n 0,675(Re *)–0,25) bewies, daß sie sowohl für den rechteckigen Kanal als auch das runde Rohr die Werte mit fast der gleichen Genauigkeit wie die Methode von Dodge-Metzner vorhersagen kann.Die Stanton-Zahlen für den rechteckigen Kanal bei vollausgebildeter Strömung sind in guter Übereinstimmung mit den Werten für das runde Rohr in einem Bereich vonn= 0,37 – 0,88 für eine gegebene Prandtl-Zahl, wenn man den Vergleich bei einem vorgegebenen Wert der Reynolds-Zahl anstellt, die auf die scheinbare Viskosität — abgeleitet aus der Wandschubspannungbezogen ist. Generell läßt sich sagen, daß die Werte auf ± 20% mit der Gleichung von Yoo (St=0,0152Re a –0,155 )Pr a –2/3 ) übereinstimmen. Es wird eine neue Gleichung vorgeschlagen, welche sowohl die Werte für runde Rohre als auch die für rechteckige Kanäle in bessere Übereinstimmung bringt mit den in der Literatur üblichen Ergebnissen für den Wärmeübergang an Newtonsche Fluide.

Nomenclature a constant in Eq. (8) - A area of cross-section of channel [m2] - b constant in Eq. (8) - c p specific heat of test fluid [J kg–1 K–1] - d capillary tube diameter [m] - D h hydraulic diameter, 4A/P[m] - f Fanning friction factor, w/(g9 V2/2) - h axially local (spanwise averaged) heat transfer coefficient,q w /(Twi-Tb) [Wm–2 K–1] - k f thermal conductivity of test fluid [Wm–1K–1] - K consistency index of power law fluid - n power law index - Nu fully established, local (spanwise averaged) Nusselt numberh D h /k f - P perimeter of channel [m] - Pr a Prandtl number based on apparent viscosjity, c p /k f - Pr * defined as (Re a Pr a )/Re * - q w wall heat flux [Wm–2] - Re a Reynolds number based on apparent viscosity, VD h/ - Re Metzner's generalized Reynolds number in Eq. (2) - Re * Reynolds number defined in Eq. (8) - St Stanton number,h/( V cp) - T b local bulk temperature of the fluid [K] - T wi local inside wall temperature [K] - T wo local outside wall temperature [K] - V bulk flow velocity [m s–1] - x distance from the inlet of channel along flow direction [m] Greek symbols shear rate [s–1] - apparent viscosity [Pa s] - density of test fluid [kg m–3] - shear stress [Pa] - w shear stress at the wall [Pa] Dedicated to Prof. Dr.-Ing. U. Grigull's 75th birthday  相似文献   

13.
We consider an elasticity problem in a domain Ω()F(), where Ω is an open bounded domain in R3, F() is a connected nonperiodic set in Ω like a net of slender bars, and is a parameter characterizing the microstructure of the domain. We consider the case of a surface distribution of the set F(), i.e., for sufficiently small , the set F() is concentrated in arbitrary small neighbourhood of a surface Γ. Under a hypothesis on the asymptotic behaviour of the energy functional, we obtain the macroscopic (homogenized) model. To cite this article: M. Goncharenko, L. Pankratov, C. R. Mecanique 331 (2003).  相似文献   

14.
The objective of the present Note is to estimate the equivalent torsion rigidity modulus for a cylinder whose cross-section Σ exhibits a periodical distribution of porous zones ΣP. Taking into account a second, finer, periodical distribution of pores in ΣP, we have to use the homogenization method in a biperiodical context. However, the contrast of scales at the interfaces between ΣP and the compact part ΣC of Σ, requires some subtle fitting up of this method. Finally, we point out the existence of boundary layers around the interfaces ∂ΣP and we estimate the weakening of the torque rigidness. To cite this article: M'B. Taghite et al., C. R. Mecanique 334 (2006).  相似文献   

15.
Determined are the critical crzes and crack growth characteristics for train car wheels and rails. Service and test limit size of cracks need to be distinguished in view of the difference between subcritical and the onset of rapid crack propagation. Probabilistic calculations have many advantages, but they cannot accurately predict neither the real critical minimum crack size (ac)min nor the real maximum crack growth increment Δamax. As representative values of the minimum critical crack size ac* and maximum crack growth increment Δa* are chosen for the calculations, therefore, that values which have a survival and crack growth probability, respectively, of 90%. Safety factors S(a) and are needed to account for the scatter of ac and Δa for probabilities of more than 90%. Probabilistic fracture mechanics is applied to analyze the behavior of transverse cracks in the rim of tread-braked monobloc wheels, transverse head cracks in rails and aluminothermic rail welds. These informations are supplied by the German State Railways (DR) the Office of Research and Experiments (ORE) of the International Union of Railways (UIC).  相似文献   

16.
A large scale experiment has been carried out on an experimental facility to study the mass transfer of trichloroethylene (TCE) in a partially saturated porous medium. 5 liters of TCE have been infiltrated in the vadose zone of the site. The mass transfer of TCE from the vapor plume in the unsaturated zone towards the top of groundwater was quantified based on an analytical and a numerical approach. The mass of the pollutant measured at the exit of the model is well represented by the two mathematical approaches. It is found that the transfer of TCE towards the groundwater from the vapor plume is weak, which corresponds to 285 g of TCE, approximately 4% of the initial mass. To cite this article: H. Benremita, G. Schäfer, C. R. Mecanique 331 (2003).  相似文献   

17.
An analysis is carried out to study the effects of localized heating (cooling), suction (injection), buoyancy forces and magnetic field for the mixed convection flow on a heated vertical plate. The localized heating or cooling introduces a finite discontinuity in the mathematical formulation of the problem and increases its complexity. In order to overcome this difficulty, a non-uniform distribution of wall temperature is taken at finite sections of the plate. The nonlinear coupled parabolic partial differential equations governing the flow have been solved by using an implicit finite-difference scheme. The effect of the localized heating or cooling is found to be very significant on the heat transfer, but its effect on the skin friction is comparatively small. The buoyancy, magnetic and suction parameters increase the skin friction and heat transfer. The positive buoyancy force (beyond a certain value) causes an overshoot in the velocity profiles.A mass transfer constant - B magnetic field - Cfx skin friction coefficient in the x-direction - Cp specific heat at constant pressure, kJ.kg–1.K - Cv specific heat at constant volume, kJ.kg–1.K–1 - E electric field - g acceleration due to gravity, 9.81 m.s–2 - Gr Grashof number - h heat transfer coefficient, W.m2.K–1 - Ha Hartmann number - k thermal conductivity, W.m–1.K - L characteristic length, m - M magnetic parameter - Nux local Nusselt number - p pressure, Pa, N.m–2 - Pr Prandtl number - q heat flux, W.m–2 - Re Reynolds number - Rem magnetic Reynolds number - T temperature, K - To constant plate temperature, K - u,v velocity components, m.s–1 - V characteristic velocity, m.s–1 - x,y Cartesian coordinates - thermal diffusivity, m2.s–1 - coefficient of thermal expansion, K–1 - , transformed similarity variables - dynamic viscosity, kg.m–1.s–1 - 0 magnetic permeability - kinematic viscosity, m2.s–1 - density, kg.m–3 - buoyancy parameter - electrical conductivity - stream function, m2.s–1 - dimensionless constant - dimensionless temperature, K - w, conditions at the wall and at infinity  相似文献   

18.
We study experimentally the impact of a plastic bead on a rotating wall made of steel (velocity Ω; radial position x0). The results show that the restitution coefficient is directly function of the impact velocity x0Ω and is invariant by changing frame reference. The influence of the height of release of the particle on its angular velocity after impact is also studied. We observe an increase of the angular velocity with height followed by a saturation. We propose an interpretation for this evolution considering that the particle may roll without sliding during all the impact. This physical feature is not always taken into account in existing models of impact between rigid bodies. To cite this article: F. Rioual et al., C. R. Mecanique 336 (2008).  相似文献   

19.
To investigate the viscoelastic behavior of fluid dispersions under steady shear flow conditions, an apparatus for parallel superimposed oscillations has been constructed which consists of a rotating cup containing the liquid under investigation in which a torsional pendulum is immersed. By measuring the resonance frequency and bandwidth of the resonator in both liquid and in air, the frequency and steady-shear-rate-dependent complex shear modulus can be obtained. By exchange of the resonator lumps it is possible to use the instrument at four different frequencies: 85, 284, 740, and 2440 Hz while the steady shear rate can be varied from 1 to 55 s–1. After treatment of the theoretical background, design, and measuring procedure, the calibration with a number of Newtonian liquids is described and the accuracy of the instrument is discussed.Notation a radius of the lump - A geometrical constant - b inner radius of the sample holder - c constant - C 1, C 2 apparatus constants - D damping of the pendulum - e x , e y , e z Cartesian basis - e r , e , e z orthonormal cylindrical basis - E geometrical constant - E t , 0 E t , t relative strain tensor - f function of shear rate - F t relative deformation tensor - G (t) memory function - G * complex shear modulus - G Re(G * ) - G Im(G * ) - h distance between plates - H * transfer function - , functional - i imaginary unit: i 2= – 1 - I moment of inertia - J exc excitation current - J 0 amplitude of J exc - k * = kik complex wave number - K torsional constant - K fourth order tensor - l length of the lump - L mutual inductance - M dr driving torque - M liq torque exerted by the liquid - 0 M liq, liq steady state and dynamic part of Mliq - n power of the shear rate - p isotropic pressure - Q quality factor - r radial position - R,R 0, R c Re(Z *, Z 0 * , Z c * ) - s time - t, t time - T temperature - T, 0 T, stress tensor - u velocity - U lock-in output - 0 velocity - V det detector output voltage - V sig, V cr signal and cross-talk part of V det - x Cartesian coordinate - X , X 0, X c Im(Z *, Z 0 * , Z c * ) - y Cartesian coordinate - z Cartesian coordinate, axial position  相似文献   

20.
An experimental study on the flow of non-Newtonian fluids around a cylinder was undertaken to identify and delimit the various shedding flow regimes as a function of adequate non-dimensional numbers. The measurements of vortex shedding frequency and formation length (lf) were carried out by laser-Doppler anemometry in Newtonian fluids and in aqueous polymer solutions of CMC and tylose. These were shear thinning and elastic at weight concentrations ranging from 0.1 to 0.6%. The 10 and 20 mm diameter cylinders (D) used in the experiments had aspect ratios of 12 and 6 and blockage ratios of 5 and 10%, respectively. The Reynolds number (Re*) was based on a characteristic shear rate of U/(2D) and ranged from 50 to 9×103 thus encompassing the laminar shedding, the transition and shear-layer transition regimes. Increasing fluid elasticity reduced the various critical Reynolds numbers (Reetr*, Relf*, Rebbp*) and narrowed the extent of the transition regime. For the 0.6% tylose solution the transition regime was even suppressed. On the other end, pseudoplasticity was found to be indirectly responsible for the observed reduction in Reotr*: it increases the Strouhal number which in turn increases the vortex filaments, precursors of the transition regime. Elasticity was better quantified by the elasticity number Re′/We than by the Weissenberg number. This elasticity number involves the calculation of the viscosity at a high characteristic shear rate, typical of the boundary layer, rather than at the average value (U/(2D)) used for the Reynolds number, Re*.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号