首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All bound rovibrational levels of the H(2)O-H(2) dimer are calculated for total angular momentum J = 0-5 on two recent intermolecular potential surfaces reported by Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] and Hodges et al. [J. Chem. Phys. 120, 710 (2004)] obtained through ab initio calculations. The method used handles correctly the large amplitude internal motions in this complex; it involves a discrete variable representation of the intermolecular distance coordinate R and a basis of coupled free rotor wave functions for the hindered internal rotations and the overall rotation of the dimer. The basis is adapted to the permutation symmetry associated with the para/ortho (p/o) nature of both H(2)O and H(2) as well as to inversion symmetry. Dimers containing oH(2) are more strongly bound than dimers with pH(2), as expected, with dissociation energies D(0) of 33.57, 36.63, 53.60, and 59.04 cm(-1)for pH(2)O-pH(2), oH(2)O-pH(2), pH(2)O-oH(2), and oH(2)O-oH(2), respectively, on the potential of Valiron et al. that corresponds to a binding energy D(e) of 235.14 cm(-1). Rovibrational wave functions are computed as well and the nature of the bound states in the four different dimer species is discussed. Converged rovibrational levels on both potentials agree well with the high-resolution spectrum reported by Weida and Nesbitt [J. Chem. Phys. 110, 156 (1999)]; the hindered internal rotor model that was used to interpret this spectrum is qualitatively correct.  相似文献   

2.
The infrared spectrum of CO(2)-(pH(2))(2) trimers is predicted by performing exact basis-set calculations on a global potential energy surface defined as the sum of accurately known two-body pH(2)-CO(2) (J. Chem. Phys. 2010, 132, 214309) and pH(2)-pH(2) potentials (J. Chem. Phys. 2008, 129, 094304). These results are compared with new spectroscopic measurements for this species, for which 13 transitions are now assigned. A reduced-dimension treatment of the pH(2) rotation has been employed by applying the hindered-rotor averaging technique of Li, Roy, and Le Roy (J. Chem. Phys. 2010, 133, 104305). Three-body effects and the quality of the potential are discussed. A new technique for displaying the three-dimensional pH(2) density in the body-fixed frame is used, and shows that in the ground state the two pH(2) molecules are localized much more closely together than is the case for the two He atoms in the analogous CO(2)-(He)(2) species. A clear tunneling splitting is evident for the torsional motion of the two pH(2) molecules on a ring about the CO(2) molecular axis, in contrast to the case of CO(2)-(He)(2) where a more regular progression of vibrational levels reflects the much lower torsional barrier.  相似文献   

3.
Cross sections and rate coefficients for low lying rotational transitions in H(2)O colliding with para-hydrogen pH(2) are computed using an adiabatic approximation which reduces the dimensional dynamics from a 5D to a 3D problem. Calculations have been performed at the close-coupling level using the recent potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)]. A good agreement is found between the reduced adiabatic calculations and the 5D exact calculations, with an impressive time saving and memory gain. This adiabatic reduction of dimensionality seems very promising for scattering studies involving the excitation of a heavy target molecule by a light molecular projectile.  相似文献   

4.
In this paper a new propagation scheme is proposed for atom-diatom reactive calculations using a negative imaginary potential (NIP) within a time independent approach. It is based on the calculation of a rotationally adiabatic basis set, the neglected coupling terms being re-added in the following step of the propagation. The results of this approach, which we call two steps rotationally adiabatic coupled states calculations (2-RACS), are compared to those obtained using the adiabatic DVR method (J. C. Light and Z. Bazic, J. Chem. Phys., 1987, 87, 4008; C. Leforestier, J. Chem. Phys., 1991, 94, 6388), to the NIP coupled states results of the team of Baer (D. M. Charutz, I. Last and M. Baer, J. Chem. Phys., 1997, 106, 7654) and to the exact results obtained by Zhang (J. Z. H. Zhang and W. H. Miller, J. Chem. Phys., 1989, 91, 1528) for the D + H(2) reaction. The example of implementation of our method of computation of the adiabatic basis will be given here in the coupled states approximation, as this method has proved to be very efficient in many cases and is quite fast.  相似文献   

5.
The Li+-(H2)n n=1-3 complexes are investigated through infrared spectra recorded in the H-H stretch region (3980-4120 cm-1) and through ab initio calculations at the MP2/aug-cc-pVQZ level. The rotationally resolved H-H stretch band of Li+-H2 is centered at 4053.4 cm-1 [a -108 cm-1 shift from the Q1(0) transition of H2]. The spectrum exhibits rotational substructure consistent with the complex possessing a T-shaped equilibrium geometry, with the Li+ ion attached to a slightly perturbed H2 molecule. Around 100 rovibrational transitions belonging to parallel Ka=0-0, 1-1, 2-2, and 3-3 subbands are observed. The Ka=0-0 and 1-1 transitions are fitted by a Watson A-reduced Hamiltonian yielding effective molecular parameters. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 2.056 A increasing by 0.004 A when the H2 subunit is vibrationally excited. The spectroscopic data are compared to results from rovibrational calculations using recent three dimensional Li+-H2 potential energy surfaces [Martinazzo et al., J. Chem. Phys. 119, 11241 (2003); Kraemer and Spirko, Chem. Phys. 330, 190 (2006)]. The H-H stretch band of Li+-(H2)2, which is centered at 4055.5 cm-1 also exhibits resolved rovibrational structure. The spectroscopic data along with ab initio calculations support a H2-Li+-H2 geometry, in which the two H2 molecules are disposed on opposite sides of the central Li+ ion. The two equivalent Li+...H2 bonds have approximately the same length as the intermolecular bond in Li+-H2. The Li+-(H2)3 cluster is predicted to possess a trigonal structure in which a central Li+ ion is surrounded by three equivalent H2 molecules. Its infrared spectrum features a broad unresolved band centered at 4060 cm-1.  相似文献   

6.
New ab initio potential energy surfaces for the (2)Pi ground electronic state of the Ar-SH complex are presented, calculated at the RCCSD(T)/aug-cc-pV5Z level. Weakly bound rotation-vibration levels are calculated using coupled-channel methods that properly account for the coupling between the two electronic states. The resulting wave functions are analyzed and a new adiabatic approximation including spin-orbit coupling is proposed. The ground-state wave functions are combined with those obtained for the excited (2)Sigma(+) state [D. M. Hirst, R. J. Doyle, and S. R. Mackenzie, Phys. Chem. Chem. Phys. 6, 5463 (2004)] to produce transition dipole moments. Modeling the transition intensities as a combination of these dipole moments and calculated lifetime values [A. B. McCoy, J. Chem. Phys. 109, 170 (1998)] leads to a good representation of the experimental fluorescence excitation spectrum [M.-C. Yang, A. P. Salzberg, B.-C. Chang, C. C. Carter, and T. A. Miller, J. Chem. Phys. 98, 4301 (1993)].  相似文献   

7.
We present quantum mechanical close-coupling calculations of collisions between two hydrogen molecules over a wide range of energies, extending from the ultracold limit to the superthermal region. The two most recently published potential energy surfaces for the H(2)-H(2) complex, the so-called Diep-Johnson (DJ) [J. Chem. Phys. 112, 4465 (2000); 113, 3480 (2000)] and Boothroyd-Martin-Keogh-Peterson (BMKP) [J. Chem. Phys. 116, 666 (2002)] surfaces, are quantitatively evaluated and compared through the investigation of rotational transitions in H(2)+H(2) collisions within rigid rotor approximation. The BMKP surface is expected to be an improvement, approaching chemical accuracy, over all conformations of the potential energy surface compared to previous calculations of H(2)-H(2) interaction. We found significant differences in rotational excitation/deexcitation cross sections computed on the two surfaces in collisions between two para-H(2) molecules. The discrepancy persists over a large range of energies from the ultracold regime to thermal energies and occurs for several low-lying initial rotational levels. Good agreement is found with experiment B. Mate et al., [J. Chem. Phys. 122, 064313 (2005)] for the lowest rotational excitation process, but only with the use of the DJ potential. Rate coefficients computed with the BMKP potential are an order of magnitude smaller.  相似文献   

8.
A three-dimensional potential energy surface is developed to describe the structure and dynamical behavior of the Mg(+)-H(2) and Mg(+)-D(2) complexes. Ab initio points calculated using the RCCSD(T) method and aug-cc-pVQZ basis set (augmented by bond functions) are fitted using a reproducing kernel Hilbert space method [Ho and Rabitz, J. Chem. Phys. 104, 2584 (1996)] to generate an analytical representation of the potential energy surface. The calculations confirm that Mg(+)-H(2) and Mg(+)-D(2) essentially consist of a Mg(+) atomic cation attached, respectively, to a moderately perturbed H(2) or D(2) molecule in a T-shaped configuration with an intermolecular separation of 2.62 A? and a well depth of D(e) = 842 cm(-1). The barrier for internal rotation through the linear configuration is 689 cm(-1). Interaction with the Mg(+) ion is predicted to increase the H(2) molecule's bond-length by 0.008 A?. Variational rovibrational energy level calculations using the new potential energy surface predict a dissociation energy of 614 cm(-1) for Mg(+)-H(2) and 716 cm(-1) for Mg(+)-D(2). The H-H and D-D stretch band centers are predicted to occur at 4059.4 and 2929.2 cm(-1), respectively, overestimating measured values by 3.9 and 2.6 cm(-1). For Mg(+)-H(2) and Mg(+)-D(2), the experimental B and C rotational constants exceed the calculated values by ~1.3%, suggesting that the calculated potential energy surface slightly overestimates the intermolecular separation. An ab initio dipole moment function is used to simulate the infrared spectra of both complexes.  相似文献   

9.
10.
First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.  相似文献   

11.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

12.
In this paper we report transition frequencies and line strengths computed for H(2)O-H(2) and compare with the experimental observations of [M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 110, 156 (1999)]. To compute the spectra we use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. Our results corroborate the assignments of Weida and Nesbitt and there is good agreement between calculated and observed transitions. Possible candidates for lines that Weida and Nesbitt were not able to assign are presented. Several other bands that may be observable are also discovered. Although all the observed bands are associated with states localized near the global potential minimum, at which H(2)O acts as proton acceptor, a state with significant amplitude near the T-shape secondary potential minimum at which H(2)O acts as proton donor is identified by examining many different probability density plots.  相似文献   

13.
Cross sections and rate coefficients for low lying rotational transitions in D(2)O induced by para-H(2) collisions are presented for the first time. Calculations have been performed at the close-coupling level with the deuterated variant of the H(2)O-H(2) interaction potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)]. Rate coefficients are presented for temperatures between 1 and 30 K and are compared to the corresponding rate coefficients for H(2)O. Significant differences caused by the isotopic substitution are observed and are attributed to both kinematics and intramolecular geometry effects. Astrophysical implications are briefly discussed in view of the very recent detection of D(2)O by the Herschel Space Observatory.  相似文献   

14.
The dynamics and kinetics of the Li + H?? reaction and its isotopic variants (D?? and T??) have been studied by using a time-dependent wave packet (TDWP) coupled-channel (CC) method on the ab initio potential energy surface (PES) of Martinazzo et al. [J. Chem. Phys. 2003, 119, 21]. Total initial v = 0, j = 0 state-selected reaction probabilities for the Li + H?? reaction and its isotopic variants have been calculated from the threshold up to 1 eV for total angular momenta J from 0 to 90. Integral cross sections have been evaluated from the reaction probabilities at collision energies from threshold (≈0.2 eV) up to 1.0 eV collision. The calculated rate constants as a function of temperature show an Arrhenius type behavior in the 200 ≤ T ≤ 1000 K temperature interval. It has been found to be a considerable large intermolecular kinetic isotope effect. The TDWP-CC results are in overall good agreement with those obtained applying the TDWP Centrifugal-Sudden (CS) approximation, showing that the CS approximation is rather accurate for the title reaction.  相似文献   

15.
Results of ab initio R-matrix calculations [S. N. Altunata et al., J. Chem. Phys. 123, 084319 (2005)] indicate the presence of a broad shape resonance in electron-CaF(+) scattering for the (2)Sigma(+) electronic symmetry near the ionization threshold. The properties of this shape resonance are analyzed using the adiabatic partial-wave expansion of the scattered electron wave function introduced by Le Dourneuf et al. [J. Phys. B 15, L685 (1982)]. The qualitative aspects of the shape resonance are explained by an adiabatic approximation on the electronic motion. Mulliken's rule for the structure of the Rydberg state wave functions [R. S. Mulliken, J. Am. Chem. Soc. 86, 3183 (1964)] specifies that, except for an (n*)(-32) amplitude scale factor, every excited state wave function within one Rydberg series is built on an innermost lobe that remains invariant in shape and nodal position as a function of the excitation energy. Mulliken's rule implies a weak energy dependence of the quantum defects for an unperturbed molecular Rydberg series, which is given by the Rydberg-Ritz formula. This zero-order picture is violated by a single (2)Sigma(+) CaF Rydberg series at all Rydberg state energies (n*=5-->infinity, more so with increasing n*) below the ionization threshold, under the broad width of the shape resonance. Such a violation is diagnostic of a global "scarring" of the Rydberg spectrum, which is distinct from the more familiar local level perturbations.  相似文献   

16.
Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level [T. B. Adler et al., J. Chem. Phys. 127, 221106 (2007)] has been employed in a study of the potential energy surfaces for the complexes H(2)C(3)H(+) · Ar and c-C(3)H(3)(+) · Ar. For the former complex, a pronounced minimum with C(s) symmetry was found (D(e) ≈ 780 cm(-1)), well below the local "H-bound" minimum with C(2v) symmetry (D(e) ≈ 585 cm(-1)). The absorption at 3238 cm(-1) found in the recent infrared photodissociation spectra [A. M. Ricks et al., J. Chem. Phys. 132, 051101 (2010)] is, thus, interpreted as an essentially free acetylenic CH stretching vibration of the propargyl cation. A global minimum of C(s) symmetry was also obtained for c-C(3)H(3)(+) (D(e) ≈ 580 cm(-1)), but the energy difference with respect to the local C(2v) minimum is only 54 cm(-1).  相似文献   

17.
We report full-dimensional, electronically adiabatic potential energy surfaces (PESs) for the ground state (1A(')) and excited state (2A(')) of OH(3). The PESs are permutationally invariant fits to roughly 23,000 electronic energies (MRCI + Q/aVTZ). Classical trajectory calculations of the postquenching dynamics of OH A (2)Σ(+) are carried out on the 1A(') PES for H(2) and D(2), at previously identified conical intersections (CoIs) [B. C. Hoffman and D. R. Yarkony, J. Chem. Phys. 113, 10091 (2000)]. The initial momenta are sampled fully and partially microcanonically, corresponding to "adiabatic" and "diabatic" models of the dynamics, respectively. Branching ratios of reactive to nonreactive channels from separate C(2v), C(∞v), and C(s) symmetries of CoIs are calculated, as are final rovibrational state distributions of OH and H(2) products. The rovibrational distributions of the OH and D(2) products, the D/H-atom translational energy distribution are calculated and compared to experimental ones. Agreement for these observable quantities is good. The branching between reactive and nonreactive quenching is sensitive to the momenta sampling; very good agreement with experiment is obtained using the diabatic sampling but not with the adiabatic sampling. The vibrational state distributions of H(2)O and HOD (although not measured by experiment) are also presented.  相似文献   

18.
We have performed rigorous quantum five-dimensional (5D) calculations and analysis of the translation-rotation (T-R) energy levels of one H(2), D(2), and HD molecule inside the small dodecahedral (H(2)O)(20) cage of the structure II clathrate hydrate, which was treated as rigid. The H(2)- cage intermolecular potential energy surface (PES) used previously in the molecular dynamics simulations of the hydrogen hydrates [Alavi et al., J. Chem. Phys. 123, 024507 (2005)] was employed. This PES, denoted here as SPC/E, combines an effective, empirical water-water pair potential [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] and electrostatic interactions between the partial charges placed on H(2)O and H(2). The 5D T-R eigenstates of HD were calculated also on another 5D H(2)-cage PES denoted PA-D, used by us earlier to investigate the quantum T-R dynamics of H(2) and D(2) in the small cage [Xu et al., J. Phys. Chem. B 110, 24806 (2006)]. In the PA-D PES, the hydrogen-water pair potential is described by the ab initio 5D PES of the isolated H(2)-H(2)O dimer. The quality of the SPC/E and the PA-D H(2)-cage PESs was tested by direct comparison of the T-R excitation energies calculated on them to the results of two recent inelastic neutron scattering (INS) studies of H(2) and HD inside the small clathrate cage. The translational fundamental and overtone excitations, as well as the triplet splittings of the j=0-->j=1 rotational transitions, of H(2) and HD in the small cage calculated on the SPC/E PES agree very well with the INS results and represent a significant improvement over the results computed on the PA-D PES. Our calculations on the SPC/E PES also make predictions about several spectroscopic observables for the encapsulated H(2), D(2), and HD, which have not been measured yet.  相似文献   

19.
We present a synergetic experimental/theoretical study of hydrated hexafluorobenzene anions. Experimentally, we measured the anion photoelectron spectra of the anions, C6F6(-)(H2O)n (n=0-2). The spectra show broad peaks, which shift to successively higher electron binding energies with the addition of each water molecule to the hexafluorobenzene anion. Complementing these results, we also conducted density functional calculations which link adiabatic electron affinities to the optimized geometric structures of the negatively charged species and their neutral counterparts. Neutral hexafluorobenzene-water complexes are not thought to be hydrogen bonded. In the case of C6F6(-)(H2O)1, however, its water molecule was found to lie in the plane of the hexafluorobenzene anion, bound by two O-H...F ionic hydrogen bonds. Whereas in the case of C6F6(-)(H2O)2, both water molecules also lie in the plane of and are hydrogen bonded to the hexafluorobenzene anion but on opposite ends. This study and that of Schneider et al. [J. Chem. Phys. 127, 114311 (2007), preceding paper] are in agreement regarding the geometry of C6F6(-)(H2O)1.  相似文献   

20.
Quantum mechanical (QM) high precision calculations were used to determine N(2)-N(2) intermolecular interaction potential. Using QM numerical data the anisotropic potential energy surface was obtained for all orientations of the pair of the nitrogen molecules in the rotation invariant form. The new N(2)-N(2) potential is in reasonably good agreement with the scaled potential obtained by van der Avoird et al. using the results of Hartree-Fock calculations [J. Chem. Phys. 84, 1629 (1986)]. The molecular dynamics (MD) of the N(2) molecules has been used to determine nitrogen equation of state. The classical motion of N(2) molecules was integrated in rigid rotor approximation, i.e., it accounted only translational and rotational degrees of freedom. Fincham [Mol. Simul. 11, 79 (1993)] algorithm was shown to be superior in terms of precision and energy stability to other algorithms, including Singer [Mol. Phys. 33, 1757 (1977)], fifth order predictor-corrector, or Runge-Kutta, and was therefore used in the MD modeling of the nitrogen pressure [S. Krukowski and P. Strak, J. Chem. Phys. 124, 134501 (2006)]. Nitrogen equation of state at pressures up to 30 GPa (300 kbars) and temperatures from the room temperature to 2000 K was obtained using MD simulation results. Results of MD simulations are in very good agreement (the error below 1%) with the experimental data on nitrogen equation of state at pressures below 1 GPa (10 kbars) for temperatures below 1800 K [R. T. Jacobsen et al., J. Phys. Chem. Ref. Data 15, 735 (1986)]. For higher temperatures, the deviation is slightly larger, about 2.5% which still is a very good agreement. The slightly larger difference may be attributed to the vibrational motion not accounted explicitly by rigid rotor approximation, which may be especially important at high temperatures. These results allow to obtain reliable equation of state of nitrogen for pressures up to 30 GPa (300 kbars), i.e., close to molecular nitrogen stability limit, determined by Nellis et al. [Phys. Rev. Lett. 53, 1661 (1984)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号