首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The “topological polymer chemistry” of amphiphilic linear and cyclic block copolymers at an air/water interface was investigated. A cyclic copolymer and two linear copolymers (AB‐type diblock and ABA‐type triblock copolymers) synthesized from the same monomers were used in this study. Relatively stable monolayers of these three copolymers were observed to form at an air/water interface. Similar condensed‐phase temperature‐dependent behaviors were observed in surface pressure–area isotherms for these three monolayers. Molecular orientations at the air/water interface for the two linear block copolymers were similar to that of the cyclic block copolymer. Atomic force microscopic observations of transferred films for the three polymer types revealed the formation of monolayers with very similar morphologies at the mesoscopic scale at room temperature and constant compression speed. ABA‐type triblock linear copolymers adopted a fiber‐like surface morphology via two‐dimensional crystallization at low compression speeds. In contrast, the cyclic block copolymer formed a shapeless domain. Temperature‐controlled out‐of‐plane X‐ray diffraction (XRD) analysis of Langmuir–Blodgett (LB) films fabricated from both amphiphilic linear and cyclic block copolymers was performed to estimate the layer regularity at higher temperatures. Excellent heat‐resistant properties of organized molecular films created from the cyclic copolymer were confirmed. Both copolymer types showed clear diffraction peaks at room temperature, indicating the formation of highly ordered layer structures. However, the layer structures of the linear copolymers gradually disordered when heated. Conversely, the regularity of cyclic copolymer LB multilayers did not change with heating up to 50 °C. Higher‐order reflections (d002, d003) in the XRD patterns were also unchanged, indicative of a highly ordered structure. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 486–498  相似文献   

2.
We study theoretically the lamellar-disorder-lamellar phase transitions of AB diblock and tetrablock copolymers confined in symmetric slitlike pores where the planar surface discriminatingly adsorbs A segments but repels B segments, mimicking the hydrophobic/hydrophilic effects that have been recently utilized for the fabrication of environmentally responsive "smart" materials. The effects of film thickness, polymer volume fraction, and backbone structure on the surface morphology have been investigated using a polymer density-functional theory. The surface-induced phase transition is manifested itself in a discontinuous switch of microdomains or a jump in the surface density dictated by the competition of surface adsorption and self-aggregation of the block copolymers. The surface-induced first-order phase transition is starkly different from the thickness-induced symmetric-asymmetric or horizontal-vertical transitions in thin films of copolymer melts reported earlier.  相似文献   

3.
Composite ultrafiltration membranes were fabricated by coating a thin film of self‐assembling polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers and poly(acrylic acid) homopolymers on top of a support membrane. Block copolymers self‐assembled into a nanostructure where the minority component forms cylinders, whereas homopolymers reside in the core of the cylinders. Selective removal of the homopolymers led to the formation of pores. The morphology of the polymer layer was controlled by varying the content of homopolymers or polymer concentration of the coating solution, which led to membranes with different molecular weight cutoffs (MWCOs) and permeabilities. Uniform pores were obtained using low homopolymer contents, whereas high homopolymer contents caused macrophase separation and resulted in large polydisperse pores or craters at the surface. The thickness of the block copolymer film also influenced the structure and performance of the membranes, where a thicker film results in a strong decrease in permeability but a lower MWCO. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1546–1558  相似文献   

4.
We report a simple photolithographic approach for the creation and micropatterning of chemical functionality on polymer surfaces by use of surface-active block copolymers that contain protected photoactive functional groups. The block copolymers self-assemble at the substrate-air interface to generate a surface that is initially hydrophobic with low surface tension but that can be rendered hydrophilic and functional by photodeprotection with UV radiation. The block copolymer employed, poly(styrene-b-tert butyl acrylate), segregates preferentially to the surface of a polystyrene substrate because of the low surface tension of the polyacrylate blocks. The strong adsorption of block copolymers causes a bilayer structure to form presenting a photoactive polyacrylate layer at the surface. In the example described, the tert-butyl ester groups on the polyacrylate blocks are deprotected by exposure to UV radiation in the presence of added photoacid generators to form surface carboxylic acid groups. Surface micropatterns of carboxylic acid groups are generated by UV exposure through a contact mask. The success of surface chemical modification and pattern formation is demonstrated by X-ray photoelectron spectroscopy and contact angle measurements along with imaging by optical and fluorescence microscopy methods. The resultant chemically patterned surfaces are then used to template patterns of various biomolecules by means of selective adsorption, covalent bonding and molecular recognition mechanisms. The surface modification/patterning concept can be applied to virtually any polymeric substrate because protected functional groups have intrinsically low surface tensions, rendering properly designed block copolymers surface active in almost all polymeric substrates.  相似文献   

5.
Controlled/"living" polymerizations and tandem polymerization methodologies offer enticing opportunities to enchain a wide variety of monomers into new, functional block copolymer materials with unusual physical properties. However, the use of these synthetic methods often introduces nontrivial molecular weight polydispersities, a type of chain length heterogeneity, into one or more of the copolymer blocks. While the self-assembly behavior of monodisperse AB diblock and ABA triblock copolymers is both experimentally and theoretically well understood, the effects of broadening the copolymer molecular weight distribution on block copolymer phase behavior are less well-explored. We report the melt-phase self-assembly behavior of SBS triblock copolymers (S = poly(styrene) and B = poly(1,4-butadiene)) comprised of a broad polydispersity B block (M(w)/M(n) = 1.73-2.00) flanked by relatively narrow dispersity S blocks (M(w)/M(n) = 1.09-1.36), in order to identify the effects of chain length heterogeneity on block copolymer self-assembly. Based on synchrotron small-angle X-ray scattering and transmission electron microscopy analyses of seventeen SBS triblock copolymers with poly(1,4-butadiene) volume fractions 0.27 ≤ f(B) ≤ 0.82, we demonstrate that polydisperse SBS triblock copolymers self-assemble into periodic structures with unexpectedly enhanced stabilities that greatly exceed those of equivalent monodisperse copolymers. The unprecedented stabilities of these polydisperse microphase separated melts are discussed in the context of a complete morphology diagram for this system, which demonstrates that narrow dispersity copolymers are not required for periodic nanoscale assembly.  相似文献   

6.
This work deals with the kinetics of co-condensation polymerization of AB2 and AB monomers, giving expressions of the two-dimensional molecular weight distribution function and the number/weight average molecular weights of the resulting copolymers. The two-dimensional molecular weight distribution depends on two indices, n and l, which are the respective numbers of AB2 and AB units in a copolymer species. The evolution of the two-dimensional weight and z distributions during the co-condensation polymerization has been evaluated systematically. Finally, the two-dimensional distribution was transformed into a one-dimensional molecular weight distribution with only one variable (the molecular weight of the products instead of the degree of polymerization). The calculated results show that the highly branched copolymer has a very broad molecular weight distribution when the co-condensation polymerization approaches completion.  相似文献   

7.
Time‐resolved real‐space observations of morphology and pattern formation resulting from crystallization of ultrathin films of low‐molecular‐weight poly(ethylene oxide) (PEO) or diblock copolymers containing PEO shed light on the mechanisms of how polymer crystals are formed. We used simple but restricted geometries like thin films of controlled thickness or confinement resulting from block copolymer mesotructures. Under such conditions, we were able to relate the observed morphology and its temporal evolution directly to molecular processes and the kinetics of crystal growth. We demonstrate that changes in the morphology with time are due to different thermal histories and are the consequence of the mestable nature of polymer crystals. Information about the nucleation process was obtained by examining crystal formation in 12‐nm small spherical cells of a block copolymer mesostructure. We discuss the advantages of thin‐film studies for a better understanding of polymer crystallization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1869–1877, 2003  相似文献   

8.
陈鹏 《高分子科学》2014,32(5):595-602
Thin films of polymer blends composed of alternating copolymer, diblock copolymer and/or homopolymer are studied using Monte Carlo simulation. A multilayer morphology is observed in the film, that is, the blended polymers assemble into individual domains arranged from interior to the surfaces of the film. The coexisting components residing throughout the neighboring domains in the film make no distinguishable interface between any neighboring domains. By this means, it forms a vertical composition gradient in the polymeric film. Being different from layer-by-layer deposition of polyelectrolyte or hydrogen bonding approach etc., the layered structure in this study is formed by polymer blending in one step. Alternating copolymers are found to be essential components to form vertical composition gradient (layered structure) in thin films.  相似文献   

9.
In this article, we discuss a new chemical route for preparing polypropylene (PP) graft copolymers containing a PP backbone and several (polar and nonpolar) polymer side chains, including polybutadiene, polystyrene, poly(p-methylstyrene), poly(methyl methacrylate), and polyacrylonitrile. The new PP graft copolymers had a controlled molecular structure and a known PP molecular weight, graft density, graft length, and narrow molecular weight distribution of the side chains. The chemistry involves an intermediate poly(propylene-co-p-methylstyrene) copolymer containing few p-methylstyrene (p-MS) units. The methyl group in a p-MS unit could be lithiated selectively by alkylithium to form a stable benzylic anion. Because of the insolubility of the PP copolymer at room temperature, the excess alkylithium could be removed completely from the lithiated polymer. By the addition of the anionically polymerizable monomers, including polar and nonpolar monomers, the stable benzylic anions in PP initiated a living anionic graft-from polymerization at ambient temperature to produce PP graft copolymers without any significant side reactions. The side-chain length was basically proportional to the reaction time and monomer concentration. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4176–4183, 1999  相似文献   

10.
The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray atomization enabled precisely controlled and continuous deposition, or growth, of block copolymer thin films. It also provided, in principle, the ability to fabricate heterolattice materials using sequential depositions. This possibility was explored and the morphology of resulting composite films produced by such sequential electrospray deposition (ESD) of lamellar diblock copolymers of poly(styrene-b-4-vinylpyridine) with differing molecular weights was examined. The structure of the heterolattice interface was a strong function of temperature. Sharp interfaces with abrupt changes in the lamellar period were observed at lower deposition temperatures, while higher temperatures produced a smooth variation in the lamellar period from one molecular weight to the next. The ordering kinetics of a secondary high molecular weight layer could be substantially enhanced depending on the molecular weight of the polymer present in the underlying primary layer. These findings were discussed in the context of temperature and molecular weight dependent diffusion dynamics of the polymers in the melt which control the inter-mixing of the layers and therefore the structure of the heterolattice interface. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 247–253  相似文献   

11.
Polymeric vesicle formation is dictated by the mutual diffusion of water into the bulk block copolymer and vice versa. The hydration of three poly(ethylene oxide)-co-poly(butylene oxide) copolymers with different molecular weights has been monitored both macroscopically (confocal laser scanning microscopy) and microscopically (small-angle X-ray scattering). Both methods have revealed that the amphiphilic block copolymers swell in water following two qualitatively different growth regimes. Initially, water and copolymer diffuse into each other following a subdiffusional growth as the result of a molecular-level arrangement of the amphiphilic membranes that comprise the swollen copolymer. After a critical time, which is exponential in polymer molecular weight, the amphiphilic membranes reach their equilibrium morphology and as a consequence the growth starts to follow Fickian diffusion. The complex hydration kinetics dictate the phases formed at the interface between the amphiphilic copolymer and water. Upon hydration of simple amphiphiles, the amphiphilic film swells and the concentration gradient at the interface with water gradually drops to zero. This strongly affects the complex driving forces that control vesicle formation. Indeed, to form vesicles, an energy barrier has to be overcome, and therefore a constant concentration gradient is required. We show, by enhancing the hydration kinetics via an ac field, how the interface concentration gradient is kept constant and the magnitude of this gradient dictates the final size of the vesicles.  相似文献   

12.
13.
We previously reported that ABA‐type triblock copolymers with azobenzene‐containing terminal blocks can be utilized as a light‐induced reworkable adhesive that enables repeatable bonding and debonding on demand. The reworkability was based on the photoisomerization of the azobenzene moiety and concomitant softening and hardening of the azo blocks. Our aim in this study is to investigate the effect of the composition, molecular weight, and block copolymer architectures on the reworkable adhesive properties. For this purpose, we prepared AB diblock, ABA triblock, and 4‐arm (AB)4 star‐block copolymers consisting of polymethacrylates bearing an azobenzene moiety (A block) and 2‐ethylhexyl (B block) side chains and performed adhesion tests by using these block copolymers. As a result, among the ABA block copolymers with varied compositions and molecular weights, the ABA triblock copolymers with an azo block content of about 50 wt % and relatively low molecular weight could achieve an appropriate balance between high adhesion strength and low residual adhesion strength upon UV irradiation. Furthermore, the 4‐arm star‐block structure not only enhances the adhesion strength, but also maintains low residual adhesion strength when exposed to UV irradiation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 806–813  相似文献   

14.
Biodegradable and amphiphilic diblock copolymers [polylactide-block-poly(ethylene glycol)] and triblock copolymers [polylactide-block-poly(ethylene glycol)-block-polylactide] were synthesized by the anionic ring-opening polymerization of lactides in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. The polymerization in toluene at room temperature was very fast, yielding copolymers of controlled molecular weights and tailored molecular architectures. The chemical structure of the copolymers was investigated with 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and differential scanning calorimetry investigations. The monomodal profile of the molecular weight distribution by gel permeation chromatography provided further evidence of block copolymer formation as well as the absence of cyclic species. Additional confirmation of the block copolymers was obtained by the substitution of 2-butanol for poly(ethylene glycol); butyl groups were clearly identified by 1H NMR as polymer chain end groups. The effects of the copolymer composition and lactide stereochemistry on the copolymer properties were examined. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2235–2245, 2007  相似文献   

15.
Dramatic morphological changes are observed in the Langmuir-Blodgett (LB) film assemblies of poly(ethylene glycol)-b-(styrene-r-benzocyclobutene) block copolymer (PEG-b-(S-r-BCB)) after intramolecular cross-linking of the S-r-BCB block to form a linear-nanoparticle structure. To isolate architectural effects and allow direct comparison, the linear block copolymer precursor and the linear-nanoparticle block copolymer resulting from selective intramolecular cross-linking of the BCB units were designed to have exactly the same molecular weight and chemical composition but different architecture. It was found that the effect of architecture is pronounced with these macromolecular isomers, which self-assemble into dramatically different surface aggregates. The linear block copolymer forms disklike surface assemblies over the range of compression states, while the linear-nanoparticle block copolymer exhibits long (>10 microm) wormlike aggregates whose length increases as a function of increasing cross-linking density. It is shown that the driving force behind the morphological change is a combination of the altered molecular geometry and the restricted degree of stretching of the nanoparticle block because of the intramolecular cross-linking. A modified approach to interpret the pi-A isotherm, which includes presence of the block copolymer aggregates, is also presented, while the surface rheological properties of the block copolymers at the air-water interface provide in-situ evidence of the aggregates' presence at the air-water interface.  相似文献   

16.
A systematic investigation of the dynamic mechanical properties of high-density polyethylene (HDPE)/high-impact polystyrene (HIPS)/copolymer blends was carried out. Blends of 80/20 weight percent of HDPE/HIPS were prepared in the melt state at 180°C in a batch mixer. Synthesized pure diblock (H77) and tapered diblock (H35) copolymers of hydrogenated polybutadiene (HPB) and polystyrene (PS) were added at different concentrations (1, 3, and 5 wt %), and the dynamic mechanical properties were investigated. The results show that: (1) both the tapered and the pure diblock copolymers enhance the phase dispersion and the interphase interactions; (2) structure and molecular weight are both important parameters in the molecular design of copolymers; (3) important effects occur when only small amounts of copolymer are added (up to the interface saturation concentration SC); (4) a micellar structure formation is possible when the copolymer is in excess in the blend; (5) the effect of the copolymer structure on the SC and the critical micellar concentration (CMC) is more pronounced than the effect of molecular weight. These concentrations are found to be lower for the tapered diblock copolymer. The analysis of the dynamic mechanical thermal analysis (DMTA) results obtained for the 20/80 HDPE/HIPS blend leads to the conclusion that the copolymers also enhance the interactions between heterogeneous phases. Similar conclusions based on electron microscopy were reported in the literature. DMTA shows great potential to relate macroscopic observations to the state of a copolymer in an immiscible blend.  相似文献   

17.
The surface chemical structure development in solution-cast styrene(S)/butadiene(B) block copolymer films as a function of solvent evaporation time was investigated using sum frequency generation vibrational spectroscopy(SFG).The surface structure formation of the styrene(S)/butadien(B) block copolymer(30 wt% PS) films during the solution-to-film process was found to be controlled mainly by dynamic factors,such as the mobility of the PB block in solution.For SB diblock copolymers,a pure PB surface layer was formed only when the film was cast by dilute toluene solution.With increasing concentration of casting solution,PB and PS components were found to coexist on the film surface,and the morphology of the PB component on the film surface changed from cylindrical rods to spheres.For SBS triblock copolymers,a small amount of PS component existed on the surface even if the film was cast by 1.0 wt% toluene solution.In addition,PS components at the outermost layer of the film increased and the length of PB cylindrical rods on the surface decreased with increasing concentration of casting solution.  相似文献   

18.
Surface films of two copolymers of ethylene oxide (E) and butylene oxide (B), namely E23B8 and E87B18, have been examined by Brewster angle microscopy (BAM) and atomic force microscopy (AFM). Isotherms taken on unsupported films of these copolymers at the air-water interface showed a clear gas to liquid phase transition for E57B18 and a barely discernible phase transition for E23B8. The BAM studies showed a gradual brightening of the films as the surface pressure was increased, which was associated with a film thickening and/or a film densification. Several bright spots were also observed within the films, with the number of spots increasing gradually as the film surface pressure was increased. AFM studies of these films did not show any localized ordering, which fits in with the results from our previous X-ray study of these copolymers [Hodges, C. S.; Neville, F.; Konovalov, O.; Gidalevitz, D.; Hamley, I. W.; Langmuir 2006, 22 (21), 8821-8825], where no long-range ordering was observed. AFM imaging showed two sizes of particulates that were irregularly spaced across the film. The larger particulates were associated with silica contaminants from the copolymer synthesis, whereas the smaller particulates were assumed to be aggregated copolymer. An analysis of the semidilute region of the isotherm showed that while both copolymers had intermixed ethylene oxide and butylene oxide units, the lower molecular weight E23B8 copolymer manifested significantly more intermixing than E87B18.  相似文献   

19.
Several narrow molecular weight distribution block copolymers were prepared by a two-stage anionic polymerization technique. Films cast from these solutions were studied by electron microscopy. Replicas showed that the film surfaces were composed of layered structures with various orientations. Micrographs of ultrathin sections of stained films demonstrate that layered structure occur throughout the film. The widths of the copolymer layer spacings increase with increasing molecular weight and agree quite well with the calculated values.  相似文献   

20.
采用A/B/S三元共混体系为模型体系,其中S由A和B通过可逆的化学反应生成并充当增容剂.我们采用自由能形式的格子玻尔兹曼模拟方法,考察了在稳态及振荡剪切流动下化学反应速率、剪切速率和振荡频率对体系形态结构演化的影响.模拟给出了增容剂平均密度和空间分布随时间的演化,结果表明增容剂S的生成能有效地降低分散相的尺寸,并且通过控制化学反应速率、剪切速率和振荡频率能够有效地调控增容剂在体系中的分布,从而为控制反应共混体系的形态结构提供帮助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号