首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use isoperimetric inequalities combined with a new technique to prove upper bounds for the site percolation threshold of plane graphs with given minimum degree conditions. In the process we prove tight new isoperimetric bounds for certain classes of hyperbolic graphs. This establishes the vertex isoperimetric constant for all triangular and square hyperbolic lattices, answering a question of Lyons and Peres. We prove that plane graphs of minimum degree at least 7 have site percolation threshold bounded away from 1/2, which was conjectured by Benjamini and Schramm, and make progress on a conjecture of Angel, Benjamini, and Horesh that the critical probability is at most 1/2 for plane triangulations of minimum degree 6. We prove additional bounds for stronger minimum degree conditions, and for graphs without triangular faces.  相似文献   

2.
Directed covers of finite graphs are also known as periodic trees or trees with finitely many cone types. We expand the existing theory of directed covers of finite graphs to those of infinite graphs. While the lower growth rate still equals the branching number, upper and lower growth rates no longer coincide in general. Furthermore, the behavior of random walks on directed covers of infinite graphs is more subtle. We provide a classification in terms of recurrence and transience and point out that the critical random walk may be recurrent or transient. Our proof is based on the observation that recurrence of the random walk is equivalent to the almost sure extinction of an appropriate branching process. Two examples in random environment are provided: homesick random walk on infinite percolation clusters and random walk in random environment on directed covers. Furthermore, we calculate, under reasonable assumptions, the rate of escape with respect to suitable length functions and prove the existence of the asymptotic entropy providing an explicit formula which is also a new result for directed covers of finite graphs. In particular, the asymptotic entropy of random walks on directed covers of finite graphs is positive if and only if the random walk is transient.  相似文献   

3.
For critical bond-percolation on high-dimensional torus, this paper proves sharp lower bounds on the size of the largest cluster, removing a logarithmic correction in the lower bound in Heydenreich and van der Hofstad (Comm Math Phys 270(2):335?C358, 2007). This improvement finally settles a conjecture by Aizenman (Nuclear Phys B 485(3):551?C582, 1997) about the role of boundary conditions in critical high-dimensional percolation, and it is a key step in deriving further properties of critical percolation on the torus. Indeed, a criterion of Nachmias and Peres (Ann Probab 36(4):1267?C1286, 2008) implies appropriate bounds on diameter and mixing time of the largest clusters. We further prove that the volume bounds apply also to any finite number of the largest clusters. Finally, we show that any weak limit of the largest connected component is non-degenerate, which can be viewed as a significant sign of critical behavior. The main conclusion of the paper is that the behavior of critical percolation on the high-dimensional torus is the same as for critical Erd?s-Rényi random graphs.  相似文献   

4.
We consider a type of dependent percolation introduced in 2 , where it is shown that certain “enhancements” of independent (Bernoulli) percolation, called essential, make the percolation critical probability strictly smaller. In this study we first prove that, for two‐dimensional enhancements with a natural monotonicity property, being essential is also a necessary condition to shift the critical point. We then show that (some) critical exponents and the scaling limit of crossing probabilities of a two‐dimensional percolation process are unchanged if the process is subjected to a monotonic enhancement that is not essential. This proves a form of universality for all dependent percolation models obtained via a monotonic enhancement (of Bernoulli percolation) that does not shift the critical point. For the case of site percolation on the triangular lattice, we also prove a stronger form of universality by showing that the full scaling limit 12 , 13 is not affected by any monotonic enhancement that does not shift the critical point. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

5.
We study the connectivity properties of the complementary set in Poisson multiscale percolation model and in Mandelbrot's percolation model in arbitrary dimension. By using a result about majorizing dependent random fields by Bernoulli fields, we prove that if the selection parameter is less than certain critical value, then, by choosing the scaling parameter large enough, we can assure that there is no percolation in the complementary set.  相似文献   

6.
We consider a natural parallel version of the classical greedy algorithm for finding a maximal independent set in a graph. This version was studied in Coppersmith, Raghavan, and Tompa and they conjecture there that its expected running time on random graphs of arbitrary edge density of O (log n). We prove that conjecture.  相似文献   

7.
It was argued by Schramm and Smirnov that the critical site percolation exploration path on the triangular lattice converges in distribution to the trace of chordal SLE 6. We provide here a detailed proof, which relies on Smirnov’s theorem that crossing probabilities have a conformally invariant scaling limit (given by Cardy’s formula). The version of convergence to SLE 6 that we prove suffices for the Smirnov–Werner derivation of certain critical percolation crossing exponents and for our analysis of the critical percolation full scaling limit as a process of continuum nonsimple loops. Research of Charles M.Newman was partially supported by the US NSF under grants DMS-01-04278 and DMS-06-06696.  相似文献   

8.
We provide an explicit algorithm for sampling a uniform simple connected random graph with a given degree sequence. By products of this central result include: (1) continuum scaling limits of uniform simple connected graphs with given degree sequence and asymptotics for the number of simple connected graphs with given degree sequence under some regularity conditions, and (2) scaling limits for the metric space structure of the maximal components in the critical regime of both the configuration model and the uniform simple random graph model with prescribed degree sequence under finite third moment assumption on the degree sequence. As a substantive application we answer a question raised by ?erný and Teixeira study by obtaining the metric space scaling limit of maximal components in the vacant set left by random walks on random regular graphs.  相似文献   

9.
宋贺  向开南 《数学学报》2017,60(6):947-954
证明了体积增长不低于5次多项式的拟顶点可迁图上的简单随机游走几乎处处有无穷多个切割时,从而有无穷多个切割点.该结论在所论情形下肯定了Benjamini,Gurel-Gurevich和Schramm在文[2011,Cutpoints and resistance of random walk paths,Ann.Probab.,39(3):1122-1136]中提出的猜想:顶点可迁图上暂留简单随机游走几乎处处有无穷多个切割点.  相似文献   

10.
Abstract

We introduce a new self-interacting random walk on the integers in a dynamic random environment and show that it converges to a pure diffusion in the scaling limit. We also find a lower bound on the diffusion coefficient in some special cases. With minor changes the same argument can be used to prove the scaling limit of the corresponding walk in ? d .  相似文献   

11.
We first study the growth properties of p-adic Lie groups and its connection with p-adic Lie groups of type R and prove that a non-type R p-adic Lie group has compact neighbourhoods of identity having exponential growth. This is applied to prove the growth dichotomy for a large class of p-adic Lie groups which includes p-adic algebraic groups. We next study p-adic Lie groups that admit recurrent random walks and prove the natural growth conjecture connecting growth and the existence of recurrent random walks, precisely we show that a p-adic Lie group admits a recurrent random walk if and only if it has polynomial growth of degree at most two. We prove this conjecture for some other classes of groups also. We also prove the Choquet-Deny Theorem for compactly generated p-adic Lie groups of polynomial growth and also show that polynomial growth is necessary and sufficient for the validity of the Choquet-Deny for all spread-out probabilities on Zariski-connected p-adic algebraic groups. Counter example is also given to show that certain assumptions made in the main results can not be relaxed.  相似文献   

12.
A natural digraph analog of the graph theoretic concept of “an independent set” is that of “an acyclic set of vertices,” namely a set not spanning a directed cycle. By this token, an analog of the notion of coloring of a graph is that of decomposition of a digraph into acyclic sets. We extend some known results on independent sets and colorings in graphs to acyclic sets and acyclic colorings of digraphs. In particular, we prove bounds on the topological connectivity of the complex of acyclic sets, and using them we prove sufficient conditions for the existence of acyclic systems of representatives of a system of sets of vertices. These bounds generalize a result of Tardos and Szabó. We prove a fractional version of a strong‐acyclic‐coloring conjecture for digraphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 177–189, 2008  相似文献   

13.
 In this paper we present a new and flexible method to show that, in one dimension, various self-repellent random walks converge to self-repellent Brownian motion in the limit of weak interaction after appropriate space-time scaling. Our method is based on cutting the path into pieces of an appropriately scaled length, controlling the interaction between the different pieces, and applying an invariance principle to the single pieces. In this way, we show that the self-repellent random walk large deviation rate function for the empirical drift of the path converges to the self-repellent Brownian motion large deviation rate function after appropriate scaling with the interaction parameters. The method is considerably simpler than the approach followed in our earlier work, which was based on functional analytic arguments applied to variational representations and only worked in a very limited number of situations. We consider two examples of a weak interaction limit: (1) vanishing self-repellence, (2) diverging step variance. In example (1), we recover our earlier scaling results for simple random walk with vanishing self-repellence and show how these can be extended to random walk with steps that have zero mean and a finite exponential moment. Moreover, we show that these scaling results are stable against adding self-attraction, provided the self-repellence dominates. In example (2), we prove a conjecture by Aldous for the scaling of self-avoiding walk with diverging step variance. Moreover, we consider self-avoiding walk on a two-dimensional horizontal strip such that the steps in the vertical direction are uniform over the width of the strip and find the scaling as the width tends to infinity. Received: 6 March 2002 / Revised version: 11 October 2002 / Published online: 21 February 2003 Mathematics Subject Classification (2000): 60F05, 60F10, 60J55, 82D60 Key words or phrases: Self-repellent random walk and Brownian motion – Invariance principles – Large deviations – Scaling limits – Universality  相似文献   

14.
We consider the simple random walk on random graphs generated by discrete point processes. This random walk moves on graphs whose vertex set is a random subset of a cubic lattice and whose edges are lines between any consecutive vertices on lines parallel to each coordinate axis. Under the assumption that the discrete point processes are finitely dependent and stationary, we prove that the quenched invariance principle holds, i.e., for almost every configuration of the point process, the path distribution of the walk converges weakly to that of a Brownian motion.  相似文献   

15.
We use the known convergence of loop-erased random walk to radial SLE(2) to give a new proof that the scaling limit of loop-erased random walk excursion in the upper half-plane is chordal SLE(2). Our proof relies on a version of Wilson’s algorithm for weighted graphs which is used together with a Beurling-type estimate for random walk excursion. We also establish and use the convergence of the radial SLE path to the chordal SLE path as the bulk point tends to a boundary point. In the final section we sketch how to extend our results to more general simply connected domains.  相似文献   

16.
We study a problem related to the Lazer-McKenna conjecture in the critical case. Recent results on this conjecture in this case have been obtained in dimensions n?6. We prove here that the situation is drastically different in lower dimensions.  相似文献   

17.
We consider a random walk among unbounded random conductances whose distribution has infinite expectation and polynomial tail. We prove that the scaling limit of this process is a Fractional-Kinetics process??that is the time change of a d-dimensional Brownian motion by the inverse of an independent ??-stable subordinator. We further show that the same process appears in the scaling limit of the non-symmetric Bouchaud??s trap model.  相似文献   

18.
We establish elliptic and parabolic Harnack inequalities on graphs with unbounded weights. As an application we prove a local limit theorem for a continuous time random walk \(X\) in an environment of ergodic random conductances taking values in \((0, \infty )\) satisfying some moment conditions.  相似文献   

19.
We prove a diffusion scaling limit for the macroscopic densities of colored particles performing the simply excluded random walk, and relate this to the limiting behavior of a test particle in equilibrium.  相似文献   

20.
The integer points (sites) of the real line are marked by the positions of a standard random walk with positive integer jumps. We say that the set of marked sites is weakly, moderately or strongly sparse depending on whether the jumps of the random walk are supported by a bounded set, have finite or infinite mean, respectively. Focussing on the case of strong sparsity and assuming additionally that the distribution tail of the jumps is regularly varying at infinity we consider a nearest neighbor random walk on the set of integers having jumps ±1 with probability 12 at every nonmarked site, whereas a random drift is imposed at every marked site. We prove new distributional limit theorems for the so defined random walk in a strongly sparse random environment, thereby complementing results obtained recently in Buraczewski et al. (2019) for the case of moderate sparsity and in Matzavinos et al. (2016) for the case of weak sparsity. While the random walk in a strongly sparse random environment exhibits either the diffusive scaling inherent to a simple symmetric random walk or a wide range of subdiffusive scalings, the corresponding limit distributions are non-stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号