首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphole-based π-conjugated compounds have recently attracted significant attention due their unique electronic properties. It is now well established that the versatile phosphorus chemistry offers great opportunities for efficient fine-tuning of the properties of π-conjugated systems from a fundamental point of view; a feature that pure carbon-based π-conjugated materials cannot provide. This perspective highlights the recent progress using phosphole-based π-conjugated building blocks towards applied materials with multiple and diverse functionalities.  相似文献   

2.
The introduction of unconventional elements into π-conjugated systems has been studied to manipulate the electronic states and properties of compounds. Herein, boron- and germanium-containing hybrid macrocycles, as a new class of element-hybrid conjugated systems, have been synthesized. The palladium-catalyzed Stille cross coupling of bis(bromothienyl)borane and bis(trimethylstannylthienyl)- or bis(trimethylstannylphenyl)-substituted dithienogermoles as the boron- and germanium-containing building blocks, respectively, produced a mixture of several macrocyclic compounds. Single-crystal X-ray analysis of the 2:2 coupling product revealed a planar structure with a cavity inside the macrocycle. The optical properties of the macrocyclic products indicated rather small electronic interactions between the building units. However, intramolecular photoenergy transfer from the dithienogermole unit to the boron unit was clearly observed with respect to the fluorescence spectra.  相似文献   

3.
Benzothiazole is among prominent electron-withdrawing heteroarene moieties used in a variety of π-conjugated molecules. Its relative orientation with respect to the principal dipole vector(s) of chromophores derived thereof is crucial, affecting photophysical and nonlinear optical properties. Here we compare the photophysics and ultrafast dynamics of dipolar and octupolar molecules comprising a triphenylamine electron-donating core, ethynylene π-conjugated linker(s) and benzothiazole acceptor(s) having the matched or mismatched orientation (with respect to the direction of intramolecular charge transfer), while a carbaldehyde group is attached as an auxiliary acceptor. Among chromophores without the auxiliary acceptor, stronger fluorescence solvatochromism and faster excited state dynamics are exhibited for the derivatives with the mismatched geometry. On the contrary, introduction of the auxiliary acceptor to the benzothiazole unit enhances the intramolecular charge transfer ICT (featuring ultrafast dynamics of the excited state) for the matched geometry. The data confirm the crucial role of the relative orientation of asymmetric heteroaromatic unit (regioisomeric effect) in dipolar as well as in multipolar molecules in tuning linear and nonlinear optical properties as well as excited state dynamics.  相似文献   

4.
N-arylpyrrole-based dyes possessing excellent opto-electronic properties are promising candidates for two-photon fluorescence labeling materials. The systematic investigation of novel N-arylpyrrole derivatives is of great importance for both fine-tuning electronic spectra and designing two-photon absorption (2PA) materials. We thoroughly studied influences of the π-conjugated center and N-substituted pyrrole moieties on the linear optical and 2PA properties. Our results show that introducing N-arylpyrrole produces bathochromic-shifts of the absorption and emission bands and an enhancement of the 2PA cross section (δ(max)), demonstrating that the electron-rich pyrrole moieties can efficiently increase intramolecular charge transfer. Substitution of fluorenyl with benzothiadiazole produces the lower energy gap, higher emission lifetime, red-shift of 2PA spectra and larger δ(max). The absorption and emission bands are highly dependent on the nature of the active building blocks. The aromatic rings attached to pyrrole can modulate the absorption peaks in the high energy and thus subtly modify the electronic properties.  相似文献   

5.
The synthesis of π-conjugated acceptors based on thiadiazoloquinoxaline (TQ) derivatives is described. Apart from reporting on the functionalization of the TQ core, the influence of the substituents was studied by UV-vis absorption and emission spectroscopy, cyclic voltammetry measurements, and DFT calculations. By changing the donor as well as the π-spacer, a fine-tuning of the photo- and electrochemical properties was achieved.  相似文献   

6.
Four novel fully π-conjugated α,ω-bis(terpyridine)oligothiophenes characterized by NMR, IR, and HR-mass spectroscopy are presented and their electronic absorption/emission and redox properties are described based on both experiments and theoretical calculations. These compounds can be potentially utilized as building blocks for preparation of conjugated metallo-supramolecular polymers or dynamers and related functional materials.  相似文献   

7.
Linear ladder-type π-conjugated molecules have attracted much interest because of their intriguing physicochemical properties. To modulate their electronic structures, an effective strategy is to incorporate main-group elements into ladder-type π-conjugated molecules. In line with this strategy, a variety of ladder-type π-conjugated molecules with main-group elements have been synthesized to explore their potential utility as organic functional materials. In this context, phosphole-based π-conjugated molecules are highly attractive, owing to their unique optical and electrochemical properties, which arise from the phosphorus atom. Herein, the synthesis and physicochemical properties of doubly thiophene-fused benzodiphospholes, as a new class of phosphole-based ladder-type π-conjugated molecule, are reported. Systematic investigations into the physicochemical properties of doubly thiophene-fused benzodiphospholes revealed their pluripotent features: intense near-infrared fluorescence, excellent two-photon absorption property, and remarkably high electron-transporting ability. This study demonstrates the potential utility of doubly thiophene-fused benzodiphospholes as organic functional materials for biological imaging, nonlinear optics, organic transistors, and organic photovoltaics.  相似文献   

8.
Four linear π-conjugated systems with 1,3-diethyl-1,3,2-benzodiazaborolyl [C(6)H(4)(NEt)(2)B] as a π-donor at one end and dimesitylboryl (BMes(2)) as a π-acceptor at the other end were synthesized. These unusual push-pull systems contain phenylene (-1,4-C(6)H(4)-; 1), biphenylene (-4,4'-(1,1'-C(6)H(4))(2)-; 2), thiophene (-2,5-C(4)H(2)S-; 3), and dithiophene (-5,5'-(2,2'-C(4)H(2)S)(2)-; 4) as π-conjugated bridges and different types of three-coordinate boron moieties serving as both π-donor and π-acceptor. Molecular structures of 2, 3, and 4 were determined by single-crystal X-ray diffraction. Photophysical studies on these systems reveal blue-green fluorescence in all compounds. The Stokes shifts for 1, 2, and 3 are notably large at 7820-9760 cm(-1) in THF and 5430-6210 cm(-1) in cyclohexane, whereas the Stokes shift for 4 is significantly smaller at 5510 cm(-1) in THF and 2450 cm(-1) in cyclohexane. Calculations on model systems 1'-4' show the HOMO to be mainly diazaborolyl in character and the LUMO to be dominated by the empty p orbital at the boron atom of the BMes(2) group. However, there are considerable dithiophene bridge contributions to both orbitals in 4'. From the experimental data and MO calculations, the π-electron-donating strength of the 1,3-diethyl-1,3,2-benzodiazaborolyl group was found to lie between that of methoxy and dimethylamino groups. TD-DFT calculations on 1'-4', using B3LYP and CAM-B3LYP functionals, provide insight into the absorption and emission processes. B3LYP predicts that both the absorption and emission processes have strong charge-transfer character. CAM-B3LYP which, unlike B3LYP, contains the physics necessary to describe charge-transfer excitations, predicts only a limited amount of charge transfer upon absorption, but somewhat more upon emission. The excited-state (S(1)) geometries show the borolyl group to be significantly altered compared to the ground-state (S(0)) geometries. This borolyl group reorganization in the excited state is believed to be responsible for the large Stokes shifts in organic systems containing benzodiazaborolyl groups in these and related compounds.  相似文献   

9.
Recent progress in the chemistry of π-conjugated phosphasilenes stabilized by bulky protecting groups based on a fused-ring octa-R-substituted s-hydrindacene skeleton (Rind groups) is reviewed. The phosphasilenes with a variety of aryl substituents at the silicon atom are covered in detail. The X-ray crystallography analysis showed the highly coplanar π-framework reinforced by the perpendicularly-fixed Rind groups. Strong π–π* absorptions have been observed, demonstrating the extension of π-conjugation over the skeleton. The DFT calculations indicated that the LUMO involves significant contribution by the 3pπ*(Si–P)–2pπ*(carbon π-electron system) conjugation. The preparation of the gold(I) complexes of the π-conjugated phosphasilenes is also included.  相似文献   

10.
The use of crystal engineering to control the supramolecular arrangement of π-conjugated molecules in the solid-state is of considerable interest for the development of novel organic electronic materials. In this study, we investigated the effect of combining of two types of supramolecular interaction with different geometric requirements, amide hydrogen bonding and π-interactions, on the π-overlap between calamitic π-conjugated cores. To this end, we prepared two series of bithiophene diesters and diamides with methylene, ethylene, or propylene spacers between the bithiophene core and the functional groups in their terminal substituents. The hydrogen-bonded bithiophene diamides showed significantly denser packing of the bithiophene cores than the diesters and other known α,ω-disubstituted bithiophenes. The bithiophene packing density reach a maximum in the bithiophene diamide with an ethylene spacer, which had the smallest longitudinal bithiophene displacement and infinite 1D arrays of electronically conjugated, parallel, and almost linear N−H⋅⋅⋅O=C hydrogen bonds. The synergistic hydrogen bonding and π-interactions were attributed to the favorable conformation mechanics of the ethylene spacer and resulted in H-type spectroscopic aggregates in solid-state absorption spectroscopy. These results demonstrate that the optoelectronic properties of π-conjugated materials in the solid-state may be tailored systematically by side-chain engineering, and hence that this approach has significant potential for the design of organic and polymer semiconductors.  相似文献   

11.
We report on the synthesis and self-assembly of a new discotic organogelator based on π-conjugated triphenylbenzene with three peripheral chiral substituents. It is found that the introduction of chiral groups to the C3-symmetric molecule led to a hexagonal columnar chiral stacking of the molecules in a clockwise direction in the organogel fibers. And the fluorescent emission of the gel decreased significantly compared to the monomer state at the same concentration, as a result of the aggregation of the nonplanar triphenylbenzene core in the gel phase.  相似文献   

12.
As part of the efforts for the design new organic nonlinear optical (NLO) materials with high efficiency for present day technological requirements, a comprehensive investigation on the intramolecular charge transfer (ICT) of an efficient π-conjugated potential push-pull NLO chromophore, 1-(4-methoxyphenyl)-3-(3,4-dimethoxyphenyl)-2-propen-1-one to a strong electron acceptor group through the π-conjugated bridge has been carried out from their vibrational spectra. The NIR FT-Raman and FT-IR spectra supported by the density functional theory (DFT) quantum chemical computations have been employed to analyze the effects of intramolecular charge transfer on the geometries and the vibrational modes contributing to the linear electro-optic effect of the organic NLO material. The calculated first hyperpolarizability of DMMC is 6.650 × 10−30 esu, which is 25 times that of urea. The simultaneous IR and Raman activation of the phenyl ring modes of ν(CC/C-C) mode, ring CC stretching modes, in-plane deformation modes and the umbrella mode of methyl groups also provide evidences for the charge transfer interaction between the donors and the acceptor group through the π-system. Vibrational analysis indicates the electronic effects such as induction and back-donation on the methyl hydrogen atoms causing the lowering of stretching wavenumbers have also been analyzed in detail. The planar conformations would give an enhanced NLO activity where as any deviations from planarity would decrease the mobility of electrons within the π-conjugated molecular system, resulting a reduction in NLO activity.  相似文献   

13.
Chen  Jianhua  Ye  Fengying  Lin  Yan  Chen  Zhao  Liu  Shenghua  Yin  Jun 《中国科学:化学(英文版)》2019,62(4):440-450
Benzothiadiazole(BTD) has been extensively used as a building block in optical materials. In this work, a class of π-conjugated BTD-based luminogens BTD-685, BTD-580, BTD-675 and BTD-565 were designed by varying donor units and facilely synthesized by Heck coupling reaction. It was found that their emission in solid state covered the regio from orange, red to near infrared fluorescence. Investigation on photo-physical property manifested that they had strong solvatochromic behavior except symmetric 2-vinylpyridine substituted BTD-565. Crystal X-ray diffraction analysis revealed that they involved in multi weak intermolecular interactions. And loose molecular packing implied that they can be easily rearranged under external force stimuli.Indeed, all compounds showed reversible mechanically-responsive behavior in solid state. Interestingly, the vinylpyridinecontaining BTD-565 exhibited hypochromatic mechanochromic behavior, whereas others showed bathochromic mechanochromism behavior. It was worth mentioning that BTD-675 had self-recovery behavior after grinding. The powder X-ray diffraction study showed that these chromic processes may be mainly attributed to the reversible morphological changes between crystalline and amorphous phase upon grinding or fuming. These observations suggested that the vinyl-functionalized benzothiadiazoles can be considered as a type of excellent candidates in mechanically-responsive chromic materials.  相似文献   

14.
The synthesis and characterization of laterally extended azabora[5]-, -[6]- and -[7]helicenes, assembled from N-heteroaromatic and dibenzo[g,p]chrysene building blocks is described. Formally, the π-conjugated systems of the pristine azaborole helicenes were enlarged with a phenanthrene unit leading to compounds with large Stokes shifts, significantly enhanced luminescence quantum yields (Φ) and dissymmetry factors (glum). The beneficial effect on optical properties was also observed for helical elongation. The combined contributions of lateral and helical extensions resulted in a compound showing green emission with Φ of 0.31 and |glum| of 2.2×10−3, highest within the series of π-extended azaborahelicenes and superior to emission intensity and chiroptical response of its non-extended congener. This study shows that helical and lateral extensions of π-conjugated systems are viable strategies to improve features of azaborole helicenes. In addition, single crystal X-ray analysis of configurationally stable [6]- and -[7]helicenes was used to provide insight into their packing arrangements.  相似文献   

15.
Organic and polymeric molecules based on π-conjugated units represent an important class of components for optical and optoelectronic functionalized soft materials. Inspired by the innovative molecular design made by synthetic chemists, new functions and applications of π-conjugated molecules are continuously emerging. However, a challenge that remains is to soften these molecules. Alkylation is a commonly employed synthetic strategy to achieve functionalization in order to improve processability, i.e., solubility in volatile solvents, for better utilization in the rapidly-developing field of organic electronics. In addition it is recognized as a powerful strategy to tune the interaction among the π-conjugated moieties. In a different interpretation of alkylation, alkylated-π compounds can be viewed as a class of hydrophobic amphiphiles, since the rigid π-conjugated moiety and flexible alkyl chains are intrinsically immiscible. Recent studies have shown that such compounds can form a variety of self-organized solid and thermotropic liquid crystalline structures as well as nonassembled liquid forms depending upon the position, number and kinds of attached alkyl chains. Here, we present a brief overview of recent developments of alkylated-π chemistry, with an emphasis on the relationships between molecular design, self-assembly behavior and applications in optical and optoelectronic devices. We hope this review can serve as a guide and reference for people working in different research areas, including self-assembly and colloid sciences, synthetic and materials chemistry was well as organic electronics.  相似文献   

16.
A series of π-conjugated molecules based on diimidazolepyridine derivatives were designed, synthesized by Suzuki coupling reaction and cyclization reaction and characterized. Diimidazolepyridine motif as the main structure could improve the thermal stability and optical property of the materials. All of the target compounds exhibited good thermal stabilities with Td values in the range of 416–490?°C. These compounds showed steady blue light emissions in the range of 424–478?nm and high quantum yields (0.33–0.69) in solution. Especially, compound 4f achieved appropriate energy gap (Eg?=?2.69?eV) and high fluorescence quantum yields (Φf?=?0.69) because of introducing electron-donating group, such energy gap was helpful to electronic transfer and transport. The materials have great potential for good electronic-transmission materials in OLEDs.  相似文献   

17.
Experimental and theoretical methods were used to study newly synthesized thiophene-pi-conjugated donor-acceptor compounds, which were found to exhibit efficient intramolecular charge-transfer emission in polar solvents with relatively large Stokes shifts and strong solvatochromism. To gain insight into the solvatochromic behavior of these compounds, the dependence of the spectra on solvent polarity was studied on the basis of Lippert-Mataga models. We found that intramolecular charge transfer in these donor-acceptor systems is significantly dependent on the electron-withdrawing substituents at the thienyl 2-position. The dependence of the absorption and emission spectra of these compounds in methanol on the concentration of trifluoroacetic acid was used to confirm intramolecular charge-transfer emission. Moreover, the calculated absorption and emission energies, which are in accordance with the experimental values, suggested that fluorescence can be emitted from different geometric conformations. In addition, a novel S(2) fluorescence phenomenon for some of these compounds was also be observed. The fluorescence excitation spectra were used to confirm the S(2) fluorescence. We demonstrate that S(2) fluorescence can be explained by the calculated energy gap between the S(2) and S(1) states of these molecules. Furthermore, nonlinear optical behavior of the thiophene-pi-conjugated compound with diethylcyanomethylphosphonate substituents was predicted in theory.  相似文献   

18.
Novel donor–acceptor–donor (D–A–D) π-conjugated molecules based on a dipyrido[3,2-a:2′,3′-c]phenazine (dppz) skeleton were synthesized, and their luminescent properties were investigated. Introduction of various aryl substituents to the 10- and 13-positions of dppz allowed us to tune the emission properties through modulation of the intramolecular charge transfer (ICT) character on the D–A–D chromophores. Coordination of platinum(II) to the diimine site of dppz also gave rise to facilitation of the ICT to induce a significant red shift of the emission.  相似文献   

19.
By synergistically employing four key strategies: (I) introducing tetraphenylethylene groups as the central core unit with aggregation-induced emission (AIE) properties, (II) optimizing the π-conjugated length by extending the building block branches, (III) incorporating flexible groups containing ethylenic bonds, and (IV) applying crystal engineering to attain dense stacking mode and highly twisty conformation, we successfully synthesized a series of hydrogen-bonded organic frameworks (HOFs) exhibiting exceptional one/two-photon excited fluorescence. Notably, when utilizing the fluorescently superior building block L2, HOF-LIFM-7 and HOF-LIFM-8 exhibiting high quantum yields (QY) of 82.1 % and 77.1 %, and ultrahigh two-photon absorption (TPA) cross-sections of 148959.5 GM and 123901.1 GM were achieved. These materials were successfully employed in one and two-photon excited lysosome-targeting cellular imaging. It is believed that this strategy, combining building block optimization and crystal engineering, holds significant potential for guiding the development of outstanding fluorescent HOF materials.  相似文献   

20.
Novel zinc porphyrin tweezers in which two zinc porphyrins were connected with π-conjugated boron dipyrromethenes (BDP meso-Por(2) and BDP β-Por(2)) through triazole rings were synthesized to investigate the photoinduced energy transfer and electron transfer. The UV-vis spectrum of BDP β-Por(2) which has less bulky substituents than BDP meso-Por(2) exhibits splitting of the Soret band as a result of the interaction between porphyrins of BDP β-Por(2) in the excited state. Such interaction between porphyrins of both BDP β-Por(2) and BDP meso-Por(2) is dominant at room temperature, while the coordination of the nitrogen atoms of the triazole rings to the zinc ions of the porphyrins occurs at low temperature. The conformational change of the BDP-porphyrin composites was confirmed by the changes in UV-vis and fluorescence spectra depending on temperature. Photodynamics of BDP meso-Por(2) and BDP β-Por(2) has also been investigated by laser flash photolysis. Efficient singlet-singlet energy transfer from the ZnP to the π-conjugated BDP moiety of both BDP meso-Por(2) and BDP β-Por(2) occurred in opposite direction as compared to energy transfer from conventional BDP to ZnP due to the π-conjugation in nonpolar toluene. In polar benzonitrile, however, additional electron transfer occurred along with energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号