首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
The results of study on the properties of dimers of thiamonomethine-and thiatrimethinecyanines (thiacarbocyanines) in the ground and electronically excited states in aqueous solutions are presented. Dimers of cyanine dyes have the sandwiched structure with near-parallel alignment of the polymethine chains of the monomers in the dimer. The formation of dimers is manifested by two absorption bands of different intensities due to splitting of the S* level of the monomers upon their resonance interaction. Dimers of thiacarbocyanines are characterized by a low fluorescence quantum yield φfl as compared to monomers; however, φfl of dimers of thiamonomethinecyanines are markedly higher than that of monomers. Dimers of cyanine dyes are also characterized by a relatively high quantum yield of intersystem crossing to the triplet state. In the triplet-triplet absorption spectra, two bands of different intensities are revealed, which are due to the splitting of the higher triplet level of the monomers that form the dimer. In the presence of electron donors (ascorbic acid, hydroquinone) and/or acceptors (p-benzoquinone, p-nitroacetophenone, methylviologen), the triplet state of dimers is quenched as a result of electron transfer yielding radical products. Dimers in the triplet state can serve as photosensitizers of redox reactions.  相似文献   

2.
Liquid-crystalline (LC) monomers, which were functionalized with a cinnamoyl group on their extremity, were synthesized and irradiated with UV light in their LC phases. In the presence of a triplet sensitizer, most LC monomers were converted into the corresponding dimers, which were produced by the cycloaddition reaction of the cinnamoyl group. The photodimerization reaction could proceed while the LC phases were maintained, because the dimers showed LC phases whose temperature ranges were wider than those of the corresponding monomers. A 1H NMR study of the LC dimers indicated that the cyclobutane unit dominantly had an anti-head-to-head configuration, that is, δ-truxinate. As the LC monomers, which had a phenyl biphenyl-4-carboxylate moiety as a mesogen, showed smectic A phases and the corresponding dimers also exhibited smectic A phases, we estimated the smectic layer distances by X-ray diffraction analysis and found that the dimers adopted the structure in which the two mesogens aligned laterally and existed in the same smectic layer in the LC phases.  相似文献   

3.
Liquid‐crystalline (LC) monomers, which were functionalized with a cinnamoyl group on their extremity, were synthesized and irradiated with UV light in their LC phases. In the presence of a triplet sensitizer, most LC monomers were converted into the corresponding dimers, which were produced by the cycloaddition reaction of the cinnamoyl group. The photodimerization reaction could proceed while the LC phases were maintained, because the dimers showed LC phases whose temperature ranges were wider than those of the corresponding monomers. A 1H NMR study of the LC dimers indicated that the cyclobutane unit dominantly had an anti‐head‐to‐head configuration, that is, δ‐truxinate. As the LC monomers, which had a phenyl biphenyl‐4‐carboxylate moiety as a mesogen, showed smectic A phases and the corresponding dimers also exhibited smectic A phases, we estimated the smectic layer distances by X‐ray diffraction analysis and found that the dimers adopted the structure in which the two mesogens aligned laterally and existed in the same smectic layer in the LC phases.  相似文献   

4.
Study of the non‐covalent molecular complexes in gas phase by electrospray ionization mass spectrometry (ESI‐MS) represents a promising strategy to probe the intrinsic nature of these complexes. ESI‐MS investigation of a series of synthetic octapeptides containing six alanine and two lysine residues differing only by their positions showed the formation of non‐covalent dimers, which were preserved in the gas phase. Unlike the monomers, the dimers were found to show only singly protonated state. The decrease in the solvent polarity from water to alcohol showed enhanced propensity of formation of the dimer indicating that the electrostatic interaction plays a crucial role to stabilize the dimer. Selective functionalization studies showed that ε‐NH2 of lysine and C‐terminal amide (? CONH2) facilitate the dimerization through intermolecular hydrogen bonding network. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
By means of ab initio HF methods, the ground state structures of 8-hydroxyquinoline (8-HQ) monomers and dimers were optimized using the 6-311+g* and 6-31G basis sets, respectively. The lowest singlet excited states of 8-HQ monomers and dimers have been studied by the single-excitation configuration interaction (CIS) approach at the same level. In the studies of the potential energy surface, it was found that all the stable configurations corresponded to enol form. The UV-vis and fluorescence spectra of 8-HQ monomers and dimers under a solvent effect condition were also calculated using the TD-B3LYP/6-31+G* method based on the HF- and CIS-optimized geometries. The computed absorption and fluorescence spectral characteristics for monomers and dimers were in good agreement with previously reported experimental values. The results also show that 8-HQ has very poor fluorescence in solvents.  相似文献   

6.
[Chemical reaction: See text] The interaction between three different sp2 organolithium compounds (vinyllithium, 2-methoxyvinyllithium and phenyllithium) and formaldehyde has been investigated using DFT theoretical methods. The unsolvated monomers and dimers have been considered and compared to the 1:1 mixed aggregates formed with lithium dimethylamide. In all cases, the separate entities, their docking complexes, the transition states, and the condensation products have been characterized and compared to the corresponding situations involving methyllithium, taken as a prototypic sp3 nucleophile. Regarding the monomers, this study shows that, in the three cases considered, formaldehyde forms a pretransition state complex in which the oxygen of the carbonyl interacts with the lithium cation along one of its lone pair. A small energy barrier (< or =2.1 kcal.mol(-1)) brings to the transition state, then to the lithium alcoholate resulting from the largely exothermic condensation (approximately 40 kcal.mol(-1)). The structure of the homogeneous dimers considered in a second step has been optimized and lead to arrangements in which a planar quadrilateral C-Li-C-Li is always obtained. In the presence of formaldehyde, these entities provide complexes exhibiting lithium-oxygen interaction similar to those occurring with the monomers. For the dimers, the geometry at the TS evokes a pi-complex between the C=O and the lithium cation, particularly pronounced in the case of phenyllithium. The resulting alcoholates are obtained following a larger exothermic reaction (approximately 55 kcal.mol(-1)). The heterogeneous dimers with lithium dimethylamide have been finally examined. In these cases, the aldehyde can orientate toward either the carbon or the nitrogen, leading to the expected lithium alcoholate or alpha-amino alcoholate, respectively. Whatever the orientation, the complexes present characteristics close to those calculated for the homogeneous dimer complexes. These similarities are conserved at the transition state.  相似文献   

7.
Homogeneous π‐stacking dimers of phenalenyl and its derivatives have gained tremendous interest as components of conducting organic materials. For the first time, we investigate theoretically heterogeneous phenalenyl π‐dimers. Key parameters, including charge transfer, interaction energy, singly occupied molecular orbital (SOMO) energy, and spin density, are studied with the help of density functional theory. We find that the amount of charge transfer between the two monomers in phenalenyl π‐dimers correlates with the difference in the SOMO energies of the constituent monomers, where the SOMO energy plays the role of a monomer (group) electronegativity index. Charge transfer plays an important role in stabilizing the heterodimers while maintaining a significant diradicaloid character. For five heterodimers the interaction energy is found to be as large as ?30 to ?50 kcal mol?1. The presented correlation between the monomer SOMO energy levels and their stability can provide a simple predictive tool to design new highly stable π‐stacking heterodimers.  相似文献   

8.
A method is introduced for simple calculation of charge transfer between very large solvated organic dimers (fullerenes here) from isolated dimer calculations. The individual monomers in noncentrosymmetric dimers experience different chemical environments, so that the dimers do not necessarily represent bulk‐like molecules. Therefore, we apply a delocalizing bias directly to the Fock matrix of the dimer system, and verify that this is almost as accurate as self‐consistent solvation. As large molecules like fullerenes have a plethora of excited states, the initially excited state orbitals are thermally populated, so that the rate is obtained as a thermal average over Marcus thermal transfers. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
We have designed and utilized a simple molecular recognition system to study the substituent effects in aromatic interactions. Recently, we showed that 3‐ and 3,5‐disubstituted benzoyl leucine diethyl amides with aromatic rings of varying electronic character organized into homochiral dimers in the solid state through a parallel displaced π–π interaction and two hydrogen bonds, but no such homochiral dimerization was observed for the unsubstituted case. This phenomenon supports the hypothesis that substituents stabilize π–π interactions regardless of their electronic character. To further investigate the origin of substituent effects for π–π interactions, we synthesized and crystallized a series of 4‐substituted benzoyl leucine diethyl amides. Surprisingly, only two of the 4‐substituted compounds formed homochiral dimers. A comparison among the 4‐substituted compounds that crystallized as homochiral dimers and their 3‐substituted counterparts revealed that there are differences in regard to the geometry of the aromatic rings with respect to each other, which depend on the electronic nature and location of the substituent. The crystal structures of the homochiral dimers that showed evidence of direct, local interactions between the substituents on the aromatic rings also displayed nonequivalent dihedral angles in the individual monomers. The crystallographic data suggests that such “flexing” may be the result of the individual molecules orienting themselves to maximize the local dipole interactions on the respective aromatic rings. The results presented here can potentially have broad applicability towards the development of molecular recognition systems that involve aromatic interactions.  相似文献   

10.
从三种冠状病毒主要蛋白酶SARS 3CL, HCoV 3CL和TGEC 3CL蛋白酶结构出发,着重研究了三种蛋白酶二聚体单体之间的静电和疏水相互作用.用连续介质模型有限差分方法计算得到三种蛋白二聚体界面处的静电势,发现三种蛋白酶单体和单体之间静电势分布具有明显的互补性,三种蛋白酶二聚体单体之间具有相同的静电相互作用能.用溶剂可及表面积模型分析了分子表面积及疏水性,发现三种蛋白酶具有相同的疏水分布,其中SARS 3CL蛋白酶疏水率为74%,驱动其单体聚合成二聚体.对三种蛋白酶的去溶剂化能疏水项的计算表明,三种蛋白酶二聚体单体之间具有相似的疏水相互作用能.  相似文献   

11.
In this paper, we report the study of a new series of symmetric chiral liquid crystalline siloxane dimers, their related monomers, and two of those monomers with heptamethyltrisiloxane attached. All the dimers coupled with a trisiloxane show the SmCA phase, which in several cases has a large tilt angle greater than 40° over a wide temperature range, as well as high spontaneous polarisation in the field‐induced ferroelectric state. Spacer lengths of 3–6 and 11 carbons between the siloxane central unit and the mesogenic cores were used. Monomers with 3–6 carbons in the spacer showed only orthogonal phases while the monomer with an 11‐carbon spacer, as well as the monomers with siloxane attached, have a high tilt angle ferroelectric phase. The materials were characterized by means of DSC, NMR, X‐ray diffraction, electro‐optical methods (tilt angle and texture characterization) and polarization measurements.  相似文献   

12.
In this paper, we report the study of a new series of symmetric chiral liquid crystalline siloxane dimers, their related monomers, and two of those monomers with heptamethyltrisiloxane attached. All the dimers coupled with a trisiloxane show the SmCA phase, which in several cases has a large tilt angle greater than 40° over a wide temperature range, as well as high spontaneous polarisation in the field-induced ferroelectric state. Spacer lengths of 3-6 and 11 carbons between the siloxane central unit and the mesogenic cores were used. Monomers with 3-6 carbons in the spacer showed only orthogonal phases while the monomer with an 11-carbon spacer, as well as the monomers with siloxane attached, have a high tilt angle ferroelectric phase. The materials were characterized by means of DSC, NMR, X-ray diffraction, electro-optical methods (tilt angle and texture characterization) and polarization measurements.  相似文献   

13.
王桂秀  王建平 《化学学报》2012,70(4):411-422
用量子化学计算方法研究了DNA碱基单体及其15个B型和2个G-四链体的叠加二聚体的非谐性振动光谱特征.研究发现,从碱基单体到二聚体,C=O伸缩模式之间的相互作用很强,表现在其非谐性振动频率和非谐性常数都发生了明显的改变,特别是在含碱基G的叠加体中.这些变化能在一维和二维红外光谱中很好地表现出来.利用振动模式的势能分布和非谐性常数的组成分析,讨论了叠加二聚体中C=O模式的离域化程度.  相似文献   

14.
The synthesis of five spiro-linked azaacene dimers is reported and their properties are compared to that of their monomers. Dimerization quenches emission of the longer (≥(hetero)tetracenes) derivatives and furnishes amorphous thin-films, the absorption is not affected. The larger derivatives were tested as acceptors in bulk-heterojunction photovoltaic devices with a maximum power conversion efficiency of up to 1.6 %.  相似文献   

15.
We investigated the spectroscopic properties of a series of four bistriarylamine donor-pi-bridge-donor D-pi-D compounds (dimers), composed of two asymmetric triarylamine chromophores (monomers). UV/vis, fluorescence, and transient absorption spectra were recorded and compared with those of the corresponding D-pi monomers. Bilinear Lippert-Mataga plots indicate a major molecular reorganization of the excited state in polar media for all compounds. The excited states of the dimers are described as mixed-valence states that show, depending on the chemical nature of the pi bridge, a varying amount of interactions (couplings). We found that superradiant emission, that is, an enhancement of the fluorescence rate in the dimer, is observed only in the case of weak and medium coupling. Whether the first excited-state potential energy surface of the dimers is described by single minimum or a double minimum potential depends on the solvent polarity and the electronic coupling. In the latter case, the dimer relaxes in a symmetry broken CT state with partial positive charge at the triarylamine donor and negative charge at the pi bridge. The [2.2]paracyclophane bridged dimer is an example of a weakly coupled system because the spectroscopic behavior is very similar to the corresponding p-xylene monomer. In contrast, anthracene as well as p-xylene bridges mediate a stronger coupling and reveal a significant cooperative influence on the optical properties.  相似文献   

16.
A theoretical study of the HTeXH (X=O, S, Se and Te) monomers and homodimers was carried out by means of second‐order Møller‐Plesset perturbation theory (MP2) computational methods. In the case of monomers, the isomerization energy from HTeXH to H2Te=X and H2X=Te (X=O, S, Se, and Te) and the rotational transition‐state barriers were obtained. Due to the chiral nature of these compounds, homo and heterochiral dimers were found. The electron density of the complexes was characterized with the atoms‐in‐molecules (AIM) methodology, finding a large variety of interactions. The charge transfer within the dimers was analyzed by means of natural bond orbitals (NBO). The density functional theory‐symmetry adapted perturbation theory (DFT‐SAPT) method was used to compute the components of the interaction energies. Hydrogen bonds and chalcogen–chalcogen interactions were characterized and their influence analyzed concerning the stability and chiral discrimination of the dimers.  相似文献   

17.
1 INTRODUCTION Tetrazole and its derivatives are widely applied in the fields of agriculture, biology, chemistry, phar- macology and photographic technology, and they play significant roles in the science and technology as well as national defence[1]. In the past, the res- earches were focused on the molecular geometries, electronic structures, IR, thermodynamic properties, tautomerization, pyrogenation and sensitivity of tetrazole compounds[1~5]. However, study of tetra- zole dimers ha…  相似文献   

18.
The study of possible chiral recognition of a series of peptide models (For-Gly-NH2, For-Ala-NH2 and four of their fluoro substituted derivatives) has been carried out by means of DFT calculations. Homo (L,L) and heterochiral (L,D) dimers formed by hydrogen bond (HB) complexation have been considered. Initially, the conformational preferences of the monomers have been calculated and used to generate all the possible homo and heterochiral dimers. The energetic results show that in most cases, the β monomers are the most stable while in the dimers, the γ–γ complexes show the strongest interaction energies. In three of the four chiral cases studied, a heterochiral dimer is the most stable one. In addition, the electron density and nuclear shielding of the complexes have been studied.  相似文献   

19.
Hydroxybenzenes are the parent compounds of large classes of derivatives, many of which exhibit biological activities. This work presents the results of a comparative study of the dimers of selected hydroxybenzenes, considering all the possible mutual geometrical arrangements of the two monomers and comparing their relative stabilities and interaction energies. The OH···OH hydrogen bond between the two monomers is the dominant stabilizing factor, with frequent preference for mutual perpendicularity of the two aromatic rings. C? H···O unconventional H‐bonds, OH···π unconventional H‐bonds, H···π interactions and π··π interactions also may play significant roles. The factors stabilizing individual hydroxybenzenes (presence of intramolecular hydrogen bonds; number, positioning and orientation of the OH groups; symmetry features) have greater influence on the dimers' relative energy than on the interaction energy between monomers. While results from different calculations methods (HF, MP2, and DFT/B3LYP) show consistency for all the features just‐mentioned, they show some relevant differences in the way they take into account different types of interactions between monomers, resulting in some differences in the geometry arrangements of the monomers in the lowest energy dimers and in differences in the relative preferences among higher‐energy dimer geometries. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

20.
The effect of cationic (CTAB), anionic (SDS) and neutral (Triton X-100) surfactants on the spectral and luminescence properties and photoreactions of three sulfopropyl-9-ethylthiacarbocyanine dyes (Dyes 1–3) was studied in aqueous solutions. In the absence of the surfactants, Dyes 1–3 occur in the form of an equilibrium mixture of cis-monomers and dimers. Neither monomers nor dimers are capable of fluorescence and cis-trans photoisomerization, and only the dimers experience intersystem crossing into the triplet state. In the presence of any of the surfactants at a concentration below the critical micelle concentration, the dimers undergo disaggregation; it is only in the presence of CTAB that the formation of a J-aggregate—which dissociates into monomers with an increase in the CTAB concentration—takes place. As the surfactant concentration increases, dye fluorescence appears, which is accompanied by a decrease in the yield of the dimer triplet state, and the amenability of the thiacarbocyanine monomers to cis-trans photoisomerization and transition to the triplet state is observed. The spectral effects observed are related to the conversion of the cis-form of the monomer to the trans-form upon solubilization of the dye molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号