首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexation processes of N,N’-dibutyl-1,4,5,8-naphthalene diimide ( NDI ) into two types of π-electron-rich molecular containers consisting of two Zn(II)-porphyrins connected by four flexible linkers of two different lengths, were characterized by means of absorption and emission spectroscopies and molecular dynamics simulation. Notably, the addition of NDI leads to a strong quenching of the fluorescence of both cages only when they are in an open conformation suitable for guest encapsulation, a situation triggered by silver(I) ions binding to the lateral triazoles. Molecular dynamics simulations confirm the fast binding of NDI , likely assisted by NDI -silver(I) interactions. Upon NDI complexation, the two porphyrin macrocycles get closer, with an optimized face to face orientation, suggesting an induced-fit mechanism through π–π interactions with the NDI aromatic cycle. Ultrafast transient absorption experiments allowed to identify the process of quenching of the Zn-porphyrin fluorescence as an efficient photoinduced electron transfer reaction between the cage porphyrin and the included NDI guest. The process occurs on fast and ultrafast time scales in the two complexes (1.5 ps and ≤300 fs) leading to a short-lived charge separated state (charge recombination lifetimes in the order of 30–40 ps). The combined computational and experimental approach used here is able to furnish a reliable model of the NDI -cage complexation mechanism and of the corresponding electron transfer reaction, attesting the allosteric control of both processes by the silver(I) ions.  相似文献   

2.
Reaction of zinc(II) thiocyanate with pyrazine, pyrimidine, pyridazine, and pyridine leads to the formation of new zinc(II) thiocyanato coordination compounds. In bis(isothiocyanato‐N)‐bis(μ2‐pyrazine‐N,N) zinc(II) ( 1 ) and bis(isothiocyanato‐N)‐bis(μ2‐pyrimidine‐N,N) zinc(II) ( 2 ) the zinc atoms are coordinated by four nitrogen atoms of the diazine ligands and two nitrogen atoms of the isothiocyanato anions within slightly distorted octahedra. The zinc atoms are connected by the diazine ligands into layers, which are further linked by weak intermolecular S ··· S interactions in 1 and by weak intermolecular C–H ··· S hydrogen bonding in 2 . In bis(isothiocyanato‐N)‐bis(pyridazine‐N) ( 3 ) discrete complexes are found, in which the zinc atoms are coordinated by two nitrogen atoms of the isothiocyanato ligands and two nitrogen atoms of the pyridazine ligands. The crystal structure of bis(isothiocyanato‐N)‐tetrakis(pyridine‐N) ( 4 ) is known and consists of discrete complexes, in which the zinc atoms are octahedrally coordinated by two thiocyanato anions and four pyridine molecules. Investigations using simultaneous differential thermoanalysis and thermogravimetry, X‐ray powder diffraction and IR spectroscopy prove that on heating, the ligand‐rich compounds 1 , 2 , and 3 decompose without the formation of ligand‐deficient intermediate phases. In contrast, compound 4 looses the pyridine ligands in two different steps, leading to the formation of the literature known ligand‐deficient compound bis(isothiocyanato‐N)‐bis(pyridine‐N) ( 5 ) as an intermediate. The crystal structure of compound 5 consists of tetrahedrally coordinated zinc atoms which are surrounded by two isothiocyanato anions and two pyridine ligands. The structures and the thermal reactivity are discussed and compared with this of related transition metal isothiocyanates with pyrazine, pyrimidine, pyridazine, and pyridine.  相似文献   

3.
By employing the subcomponent self‐assembly approach utilizing 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrin or its zinc(II) complex, 1H ‐4‐imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O‐symmetric cages having a confined volume of ca. 1300 Å3. The use of iron(II) salts yielded coordination cages in the high‐spin state at room temperature, manifesting spin‐crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X‐ray crystallography, high‐resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures and UV/Vis spectra were independently confirmed by state‐of‐the‐art DFT calculations. A remarkably high‐spin‐stabilizing effect through encapsulation of C70 was observed. The spin‐transition temperature T 1/2 is lowered by 20 K in the host–guest complex.  相似文献   

4.
The synthesis of a range of ditopic polyferrocenyl zinc(II) dithiocarbamate macrocyclic receptors containing ferrocene groups on the macrocycle's periphery and/or as part of the cyclic cavity is reported. The assemblies have been characterised by a range of spectroscopic techniques, electrochemical studies and in two cases by X-ray structure determination. The ability of these host systems to bind and sense electrochemically anionic guest species, isonicotinate and benzoate, and neutral 4-picoline guest was examined by 1H NMR and cyclic voltammetric titration studies. The strongest association was found between the isonicotinate anion and a dinuclear zinc(II) receptor whose macrocyclic cavity is of complementary size to complex this bidentate guest species in a cooperative manner. Cyclic voltammetric studies demonstrated that all receptors can electrochemically sense the binding of isonicotinate and benzoate via significant cathodic perturbations of the respective ferrocene redox couple.  相似文献   

5.
A large covalent cage incorporating two porphyrins attached by four long and flexible polyether chains each bearing two 3-pyridyl ligands was synthesized from a DABCO-templated olefin metathesis reaction. The X-ray structure of the cage with the DABCO coordinated inside the cavity to the two zinc(II) porphyrins reveals a highly symmetric structure.  相似文献   

6.
Planar pyridyl N‐oxides are encapsulated in mono‐metallic PdII/PtII‐cages based on a tetra‐pyridyl calix[4]pyrrole ligand. The exchange dynamics of the cage complexes are slow on both the NMR chemical shift and EXSY timescales, but encapsulation of the guests by the cages is fast on the human timescale. A “French doors” mechanism, involving the rotation of the meso‐phenyl walls of the cages, allows the passage of the planar guests. The encapsulation of quinuclidine N‐oxide, a sterically more demanding guest, is slower than pyridyl N‐oxides in the PdII‐cage, and does not take place in the PtII counterpart. A modification of the encapsulation mechanism for the quinuclidine N‐oxide is postulated that requires the partial dissociation of the PdII‐cage. The substrate binding selectivity featured by the cages is related to their different guest uptake/release mechanisms.  相似文献   

7.
The five zinc(II) halide pyrazine coordination compounds poly-bis(mu2-pyrazine)-dichloro-zinc(II) (I), poly-(mu2-pyrazine-N,N')-dichloro-zinc(II) (II), poly-bis(mu2-pyrazine-N,N')-dibromo-zinc(II) (III), catena-(mu2-pyrazine-N,N')-dibromo-zinc(II) (IV), and catena-(mu-pyrazine)-diiodo-zinc(II) (V) were prepared by the reaction of ZnX2 (X = Cl, Br, I) with pyrazine in acetonitrile. In the crystal structure of compound I, the zinc atoms are coordinated by two chlorine atoms and two pyrazine ligands within distorted tetrahedra. The zinc atoms are linked by the N-donor ligands into layers. The crystal structure of compound III is very similar to that of compound I. The structure of compound III was originally reported in space group Ccca with similar a and b axes, but it was proved that the correct space group is I4/mmm. Ligand-poor compound V is isotypic to compound IV, in which ZnX2 units (X = Br, I) are connected by the pyrazine ligands into chains. It was originally reported in the noncentrosymmetric space group P2(1), but we found that the correct space group is P2(1)/m. If ligand-rich 1:2 compounds I and III are heated in a thermobalance, different mass steps are observed. We have proven that in the first step, ligand-poor compounds II and IV are formed in quantitative yields. On further heating, a second mass step occurs that leads to the formation of two new compounds of composition (ZnCl2)2(pyrazine) (VI) and (ZnBr2)2(pyrazine) (VII). However, the mass step is not well-resolved. and the new compounds are not phase-pure after the thermal event. If ligand-poor 1:1 compound V is investigated by thermogravimetry, a not-well-resolved single mass step is observed in which new ligand-poor 2:1 compound (ZnI2)2(pyrazine) (VIII) is formed. On further heating, all 2:1 compounds lose their remaining ligands and transform into the pure zinc(II) halides.  相似文献   

8.
Metal-assembled resorcinarene-based cages enclose space and entrap organic molecules from water. Addition of cobalt(II) ions to a neutral, aqueous solution of a resorcinarene that has iminodiacetic acids attached to its upper rim results in the formation of cages. These cages not only entrap organic molecules, but they do so in a selective manner. Guests with optimum size, shape, and polarity are preferentially entrapped. For example, selection of p-xylene is twenty thousand times more favorable than that of m-xylene. The enthalpy of resorcinarene deprotonation and cage formation was calculated by performing calorimetry studies and ranged from -305 to -348 kJ mol(-1). The change in enthalpy of guest encapsulation varied by as much as 43 kJ mol(-1). The differences in change in free energy of guest encapsulation varied by -16 kJ mol(-1). The changes in enthalpy and free energy of guest encapsulation were used to calculate the changes in entropy, which ranged from -97 to +37 J mol(-1) K(-1). An enthalpy-entropy compensation of guest encapsulation was observed.  相似文献   

9.
The synthesis of a series of dinuclear zinc(II) dithiocarbamate (dtc) macrocyclic receptors containing aryl spacer groups of different sizes is reported. As evidenced from 1H NMR titration investigations, these receptors have the ability to bind various neutral and anionic bidentate guests species, including 1,4-diazabicyclo[2.2.2]octane (DABCO), isonicotinate and terephthalate in a cooperative 1 : 1 intramolecular inclusion complex. Stability constant determinations reveal a correlation between the strength of complexation and complementary receptor cavity : guest molecule size. In particular, the X-ray structure of a 1 : 1 host-guest complex between a dinuclear zinc(II) dtc receptor and DABCO illustrates the cooperative nature in which the dinuclear receptor associates with the bidentate guest.  相似文献   

10.
Silver meso- and rac-tartrate and silver squarate have been synthesized, and the crystal structure of a new polymorph of the latter is reported. Three reaction products of these silver salts with pyrazine have been obtained and structurally characterized: From silver squarate, a chain polymer with linear coordination of Ag(I) by two pyrazine ligands is formed, whereas the silver tartrates yield solids in which the inner coordination sites around the metal are only partially occupied by N donors; in contrast to expectation, oxygen coordination prevails. All the four new Ag(I) coordination compounds reported show high packing coefficients in the range between 0.789 and 0.885. In order to put these results into a meaningful context, packing coefficients for the crystal structures of almost 30,000 compounds retrieved from the Cambridge Structural Database have been determined. Tartrates pack significantly closer than pyrazine complexes or metal-containing compounds in general. The exceptionally high packing coefficient of the new polymorph of silver squarate is due to stacking of anions and concomitant Ag···Ag contacts, both along the shortest lattice parameter which amounts to only 3.3990(9) ?.  相似文献   

11.
Subtle differences in metal–ligand bond lengths between a series of [M4L6]4? tetrahedral cages, where M=FeII, CoII, or NiII, were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single‐crystal X‐ray diffraction was used to study the solid‐state complexes of the iron(II) and nickel(II) cages.  相似文献   

12.
For a new sulfoethylated chitosan derivative with the degree of substitution of amino group hydrogen atoms of 0.5, the dissociation constant of functional groups has been determined by potentiometric titration. Complexing properties of sulfoethylated chitosan toward copper(II), cobalt(II), nickel(II), zinc(II), manganese(II), cadmium(II), silver(I), lead(II), magnesium(II), calcium(II), strontium(II), and barium(II) ions have been studied potentiometrically. Alkaline earth and magnesium ions do not form complexes with sulfoethylated chitosan. For the other ions, stability constants of the resulting complexes have been determined. The most stable N-2-sulfoethyl chitosan complexes are those with copper(II) and silver(I) ions.  相似文献   

13.
The design and synthesis of mixed‐metal coordination cages, which can act as hosts to encapsule guest molecules, is a subject of intensive research, and the utilization of metalloligand is an effective method to construct a designed heterometallic architecture. Herein, a series of heterometallic cages with half‐sandwich Rh, Ir and Ru fragments using CuII‐metalloligand as a building block by a stepwise approach is reported. The cavity sizes of the cages could be controlled easily by the lengths of the organic ligands. Because the metalloligands in the oxalate‐based cage are somewhat distorted and concave, there are weak Cu???O interactions in the molecules, forming a binuclear copper unit. By increasing the height of the cages using longer ligands, 2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone (H2CA), the organometallic boxes display interesting host–guest behavior, which are made large enough to accommodate some large molecules, such as pyrene and [Pt(acac)2]. Interestingly, the heterometallic cage with larger cavity size can transfer into a homometallic hexanuclear prism in the presence of pyrazine.  相似文献   

14.
A series of 11 pairs of substituted pyrazine N‐oxides, differing in the substituent position, were examined using electrospray ionization mass spectrometry (ESI‐MS) in order to use spectra to assess the differentiation of positional isomers. For each compound, mass spectra were recorded with three different metal cations, namely calcium (II), copper (II) and aluminum (III), with characterization of the observed peaks. Differentiation between regioisomeric N‐oxides has been achieved by comparison of the identity and relative intensities of the peaks originating from the adduct ions formed with the metal ions. Principal component analysis (PCA) has been employed to assist in the interpretation of the results obtained with each metal ion, exploring possible trends according to the nature and position of the substituent in the pyrazine N‐oxide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Mixed metallo-porphyrin cages were selected and amplified from dynamic combinatorial libraries (DCLs) by using appropriate templates. The cages are composed of two bisphosphine substituted zinc(II) porphyrins as ligand donors and two rhodium(III) or ruthenium(II) porphyrins as ligand acceptors, and are connected through metal-phosphorus coordination. Ru and Rh porphyrins that display a large structural diversity were employed. The templating was achieved by using 4,4'-bpy, 3,3'-dimethyl-4,4'-bipyridine and benzo[lmn]-3,8-phenanthroline, and acts through zinc-nitrogen coordination. The absolute amount of amplification from the DCLs is strongly dependent on the combination of the Ru/Rh porphyrin and the template; cages with sterically demanding porphyrins can only form with smaller templates. In the case of tert-butyl-substituted TPP (TPP=tetraphenylporphyrin), cages are not formed at all. The formation of the cages is usually complete within 24 h at an ambient temperature; in the case of the cage containing Rh(III)OEP (OEP=octaethylporphyrin) and bpy, the pseudo-first-order rate constant of cage formation was determined to be 2.1+/-0.1x10(-4) s(-1) (CDCl(3), 25 degrees C). Alternatively, heating the mixtures to 65 degrees C and cooling to room temperature yields the cages within minutes. The (1)H NMR chemical shifts of several characteristic protons show large differences upon changing the identity of the Ru/Rh porphyrin and the central metal; this is most likely to arise from variations in the geometry of the cages. The X-ray crystal structure of a cage, which contains Rh(III)OEP as a porphyrin acceptor and bpy as template, demonstrates that the cages can adopt severely distorted conformations to accommodate the relatively short templates. An extension to mixed DCLs showed that only limited selectivity is displayed by the various templates. Formation of mixed cages that contain two different rhodium porphyrins prevents effective selection, although the kinetic lability of the systems allows for some amplification. This lability, however, also prevents isolation of the individual cages. Removal of the template leads to re-equilibration, thus the templates act as scaffolds to keep the structures intact.  相似文献   

16.
Reaction of iron(II), cobalt(II) and nickel(II) selenocyanate with pyrazine in water at room temperature leads to the formation of the isotypic new ligand‐rich 1:2 (1:2 = ratio between metal and co‐ligand) compounds [M(NCSe)2(pyrazine)2]n (M = Fe ( 1 ), Co ( 2 ), Ni ( 3 )). The crystal structure of 2 was determined by X‐ray single crystal analysis and those of 1 and 3 were refined from X‐ray powder data with the Rietveld method. In their crystal structure the metal(II) cations are coordinated by four pyrazine co‐ligands, which connect them into layers, and two terminally N‐bonded selenocyanato anions in a distorted octahedral arrangement. The terminal coordination mode of the selenocyanato anions was further emphasized by IR spectroscopic investigations. On heating, all compounds decompose in a single heating step without the formation of ligand‐deficient intermediates like previously reported for related thiocyanato compounds. Magnetic measurements of compound 1 show a long‐range antiferromagnetic ordering with an ordering temperature of TN = 6.7 K, which must be mediated by the aromatic π‐system of the pyrazine ligand, whereas 2 and 3 show only Curie–Weiss behavior with antiferromagnetic exchange interactions.  相似文献   

17.
Crystallization of the title compound, di‐μ‐pyridazine‐1κ2N:2κ2N′‐bis­[(2,3‐dihydro‐3‐oxobenzisosulfonazolato‐κN)silver(I)], [Ag2(C7H4NO3S)2(C4H4N2)2], from acetonitrile yields both monoclinic, (I), and triclinic, (II), polymorphs. In both forms, the silver(I) ions have a slightly distorted trigonal AgN3 coordination geometry and are doubly bridged by two neutral pyridazine (pydz) ligands, generating a centrosymmetric dimeric structure. The saccharinate (sac) ligands are N‐coordinated. The dihedral angles between the sac and pydz rings are 8.43 (7) and 7.94 (8)° in (I) and (II), respectively, suggesting that the dimeric mol­ecule is nearly flat. The bond geometry is similar in both polymorphs. In (I), the dimers inter­act with each other via aromatic πsac–πpydz stacking inter­actions, forming two‐dimensional layers, which are further crosslinked by weak C—H⋯O inter­actions. Compound (II) exhibits similar C—H⋯O and π–π inter­actions, but additional C—H⋯π and π⋯Ag inter­actions help to stabilize the packing of the dimers.  相似文献   

18.
Static and time-resolved optical measurements are reported for two cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0 or 3 free base (Fb) porphyrins (denoted Zn(6) or Zn(3)Fb(3), respectively). The guests are a tripyridyl arene (TP) and a dipyridyl-substituted free base porphyrin (DPFb), each of which coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have an overall gradient of excited-state energies that affords excitation funneling within the host and ultimately to the guest. Collectively, the studies delineate the various pathways, mechanisms, and rate constants of energy flow among the weakly coupled constituents of the host-guest complexes. The pathways include downhill unidirectional energy transfer between adjacent chromophores, bidirectional energy migration between identical chromophores, and energy transfer between nonadjacent chromophores. The energy transfer to the lowest-energy chromophore(s) within the backbone of a hexameric host (Fb porphyrins in Zn(3)Fb(3) or pyridyl-coordinated zinc porphyrins in Zn(6)*TP and Zn(6)*DPFb) proceeds primarily via a through-bond mechanism; the transfer is rapid (approximately 40 ps depending on the array) and essentially quantitative (>or=98%). The energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the Fb porphyrin guest in the Zn(6)*DPFb complex is almost exclusively F?rster through-space in nature; this process is much slower ( approximately 1 ns) and has a lower yield (65%). These studies highlight the utility of cyclic architectures for efficient light harvesting and energy transfer to a designated trapping site.  相似文献   

19.
The complexation of N-acyl-N′-(p-toluenesulfonyl)hydrazines (ASHs) with copper(II), cobalt(II), nickel(II), zinc(II), cadmium(II), and silver(I) ions in ammoniac media was studied. The reagents were shown to form compounds with [M]: [ASH] ratios of 1: 1 and 1: 2 in solutions. ASH complexes with metal ions were preparatively separated and identified. The quantitative characteristics of complexation equilibria—the solubility products of precipitates—were found. The effects of ammonium salts and the length of a radical on the completeness of precipitation of M(II) cations with ASH were studied.  相似文献   

20.
Heterofunctionalized C(2v) symmetrical cavitand 1 with 4-pyridylethynyl and 3-carbamoylphenyl groups in alternating arrangement was designed and synthesized. A 1:1 mixture of the cavitand 1 and a cis-coordinated palladium(II) or platinum(II) complex self-assembled into a hybrid supramolecular capsule via both metal-ligand coordination bonds and hydrogen bonds. Formation of the capsular assembly was confirmed by NMR spectroscopy and mass spectrometry. The hybrid capsule encapsulated the appropriate guest, the molecular sizes of which fit the size of the capsular cavity. Structural alteration of the hybrid capsule was induced by the guest encapsulation. A C(2h) structure for the encapsulation complex was assigned by 2D NMR spectra analysis. Thermodynamic and kinetic properties of the guest encapsulation were investigated. The kinetics of in/out guest exchange was strongly influenced by hydrogen bonding in the hybrid capsule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号