首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Six new green to yellow-emitting heteroleptic bis-cyclometalated iridium(III) complexes of the type Ir(C?N)2(L?X) (C?N?=?cyclometalating ligand, L?X?=?monoanionic chelating ancillary ligand) bearing two widely used cyclometalating ligands (C?N?=?2-(2-thienyl)pyridine (thpy) and 2-phenylbenzoxazole (bo)) and six different ancillary ligands were prepared. In this study, the complexes include structurally diverse ancillary ligands that allow us to investigate several aspects of structure-property relationships. Ancillary ligands used in this study are small-bite-angle N-phenylacetamidate (paa), N-isopropylbenzamidate (ipba) and N,N′-diisopropylbenzamidinate (dipba), and larger bite-angle β-ketoiminate (acNac), β-diketiminate (NacNac), and β-thioketoiminate (SacNac). The emission color is governed by the choice of the cyclometalating ligand, but the ancillary ligands influence the electrochemical and photophysical properties. Electrochemical analysis shows that the energy of the HOMO varies substantially as the L?X structure is altered, whereas the energy of LUMO remains nearly constant. The emission maxima range from 537?nm to 590?nm, with solution quantum yields between 0.0094 and 0.60 and microsecond lifetimes. The results here reveal the ancillary ligands provide a channel to control redox properties and excited-state dynamics in cyclometalated iridium complexes that luminesce in the middle regions of the visible spectrum.  相似文献   

2.
Six disubstituted ligands based upon 2-(2′-pyridinyl/pyrazinyl)quinoline-4-carboxylic acids have been synthesised, solvent-free, in one step from a range of commercially available isatin derivatives. These species behave as ancillary chelating ligands for Ir(III) complexes of the form [Ir(C^N)2(N^N)]PF6 (where C^N=cyclometalating ligand; N^N=2-(2′-pyridinyl/pyrazinyl)quinoline-4-carboxylic acids). An X-ray crystallographic study on one complex shows a distorted octahedral geometry wherein a cis-C,C and trans-N,N coordination mode is observed for the cyclometalating ligands. DFT calculations predicted that variations in N^N ligand from 2,2′-bipyridine to L1 – 6 should localise the LUMO on to the Ln ligand and that the complexes are predicted to display MLCT/LLCT character. All complexes displayed luminescence in the deep red part of the visible region (674–679 nm) and emit from triplet states, but with little apparent tuning as a function of L1 – 6 . Further time-resolved transient absorption spectroscopy supports the participation of these triplet states to the excited state character.  相似文献   

3.
Yan Chen  Chun Liu  Lei Wang 《Tetrahedron》2019,75(47):130686
Cationic cyclometalated Ir(III) complexes (Ir1-Ir5) with fluorine-substituted 2-phenylpyridine (ppy) derivatives as C^N cyclometalating ligands and 2,2′-bipyridine (bpy) as the ancillary ligand, have been synthesized and fully characterized. The influences of the number and the position of fluorine atoms at the cyclometalating ligands on the photophysical, electrochemical and oxygen sensing properties of the Ir(III) complexes have been investigated systematically. The introduction of fluorine on the C^N cyclometalating ligands of the complexes results in blue-shifts of the maximum emission wavelengths, and increases in the photoluminescence quantum yields (ΦPL), phosphorescence lifetimes and energy gaps, compared to the non-fluorinated [Ir(ppy)2(bpy)]+PF6? (Ir0). Among them, 2-(2,4-difluorophenyl)pyridine-derived Ir4 shows the maximum blue-shift (514 nm vs. 575 nm for Ir0) and the highest ΦPL (50.8% vs. 6.5% for Ir0). The complex Ir3 with 2-(4-fluorophenyl)-5-fluoropyridine as C^N ligand exhibits the highest oxygen sensitivity and excellent operational stability in 10 cycles within 4000 s.  相似文献   

4.
Six novel Ir(C^N)2(L^X)-type heteroleptic iridium complexes with deep-red and near-infrared region (NIR)-emitting coverage were constructed through the cross matching of various cyclometalating (C^N) and ancillary (LX) ligands. Here, three novel C^N ligands were designed by introducing the electron-withdrawing group CF3 on the ortho (o-), meta (m-), and para (p-) positions of the phenyl ring in the 1-phenylisoquinoline (piq) group, which were combined with two electron-rich LX ligands (dipba and dipg), respectively, leading to subsequent iridium complexes with gradually changing emission colors from deep red (≈660 nm) to NIR (≈700 nm). Moreover, a series of phosphorescent organic light-emitting diodes (PhOLEDs) were fabricated by employing these phosphors as dopant emitters with two doping concentrations, 5% and 10%, respectively. They exhibited efficient electroluminescence (EL) with significantly high EQE values: >15.0% for deep red light0 (λmax = 664 nm) and >4.0% for NIR cases (λmax = 704 nm) at a high luminance level of 100 cd m−2. This work not only provides a promising approach for finely tuning the emission color of red phosphors via the easily accessible molecular design strategy, but also enables the establishment of an effective method for enriching phosphorescent-emitting molecules for practical applications, especially in the deep-red and near-infrared region (NIR).  相似文献   

5.
Synthetic control of the mutual arrangement of the cyclometalated ligands (C^N) in Ir(III) dimers, [Ir(C^N)(2)Cl](2), and cationic bis-cyclometalated Ir(III) complexes, [Ir(C^N)(2)(L^L)](+) (L^L = neutral ligand), is described for the first time. Using 1-benzyl-4-(2,4-difluorophenyl)-1H-1,2,3-triazole (HdfptrBz) as a cyclometalating ligand, two different Ir(III) dimers, [Ir(dfptrBz)(2)Cl](2), are synthesized depending on the reaction conditions. At 80 °C, the dimer with an unusual mutual cis-C,C and cis-N,N configuration of the C^N ligands is isolated. In contrast, at higher temperature (140 °C), the geometrical isomer with the common cis-C,C and trans-N,N arrangement of the C^N ligand is obtained. In both cases, an asymmetric bridge, formed by a chloro ligand and two adjacent nitrogens of the triazole ring of one of the cyclometalated ligands, is observed. The dimers are cleaved in coordinating solvents to give the solvento complexes [Ir(dfptrBz)(2)Cl(S)] (S = DMSO or acetonitrile), which maintain the C^N arrangement of the parent dimers. Controlling the C^N ligand arrangement in the dimers allows for the preparation of the first example of geometrical isomers of a cationic bis-cyclometalated Ir(III) complex. Thus, N,N-trans-[Ir(dfptrBz)(2)(dmbpy)](+) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), with cis-C,C and trans-N,N arrangement of the C^N ligands, as well as N,N-cis-[Ir(dfptrBz)(2)(dmbpy)](+), with cis-C,C and cis-N,N C^N ligand orientation, are synthesized and characterized. Interestingly, both isomers show significantly different photophysical and electroluminescent properties, depending on the mutual arrangement of the C^N ligands. Furthermore, quantum chemical calculations give insight into the observed photophysical experimental data.  相似文献   

6.
A novel class of luminescent dialkynylgold(III) complexes containing various phenylpyridine and phenylisoquinoline-type bidentate ligands has been successfully synthesized and characterized. The structures of some of them have also been determined by X-ray crystallography. Electrochemical studies demonstrate the presence of a ligand-centered reduction originating from the cyclometalating C^N ligand, whereas the first oxidation wave is associated with an alkynyl ligand-centered oxidation. The electronic absorption and photoluminescence properties of the complexes have also been investigated. In dichloromethane solution at room temperature, the low-energy absorption bands are assigned as the metal-perturbed π-π* intraligand (IL) transition of the cyclometalating C^N ligand, with mixing of charge-transfer character from the aryl ring to the pyridine or isoquinoline moieties of the cyclometalating C^N ligand. The low-energy emission bands of the complexes in fluid solution at room temperature are ascribed to originate from the metal-perturbed π-π* IL transition of the cyclometalatng C^N ligand. For complex 4 that contains an electron-rich amino substituent on the alkynyl ligand, a structureless emission band, instead of one with vibronic structures as in the other complexes, was observed, which was assigned as being derived from an excited state of a [π(C≡CC(6) H(4) NH(2) )→π*(C^N)] ligand-to-ligand charge-transfer (LLCT) transition.  相似文献   

7.
《化学:亚洲杂志》2017,12(16):2104-2120
A series of charge‐neutral AuIII complexes, which comprise a dicarbanionic C‐deprotonated biphenyl ligand and bidentate ancillary ligands ([Au(C^C)(L^X)]; L^X=β‐diketonate and relatives (O^O), quinolinolate and relatives (N^O), and diphosphino (P^P) ligands), were prepared. All the complexes are emissive in degassed CH2Cl2 solutions and in thin‐film samples with Φ em up to 18 and 35 %, respectively, except for 5 and 6 , which bear (N^O)‐type ancillary ligands. Variation of the electronic characteristics of the β‐diketonate ancillary ligand was demonstrated to be a viable route for tuning the emission color from blue‐green (peak λ em at ca. 466 nm for 1 and 2 ; 501 nm for 4 a and 4 b ) to orange (peak λ em at 585 nm for 3 ), in contrast to the common observations that the ancillary ligand has a negligible effect on the excited‐state energy of the AuIII complexes reported in the literature. DFT/time‐dependent (TD) DFT calculations revealed that the energies of the 3ππ*(C^C) and the 3ILCT(O^O) excited states (ILCT=intraligand charge transfer) switch in order on going from O^O=acetylacetonate (acac) to aryl‐substituted β‐diketonate ligands. Solution‐processed and vacuum‐deposited organic light‐emitting diode (OLED) devices of selected complexes were prepared. The vacuum‐deposited OLED fabricated with 2 displays a sky‐blue emission with a maximum external quantum efficiency (EQE) of 6.71 % and CIE coordinates of (0.22, 0.40). The crystal structures of 7 and 9 reveal short intermolecular AuIII⋅⋅⋅AuIII contacts, with intermetal distances of 3.408 and 3.453 Å, respectively. DFT/TDDFT calculations were performed on 7 and 9 to account for the noncovalent interactions. Solid samples of 1 , 3 , and 9 exhibit excimeric emission at room temperature, which is rarely reported in AuIII complexes.  相似文献   

8.
Investigations of blue phosphorescent organic light emitting diodes (OLEDs) based on [Ir(2-(2,4-difluorophenyl)pyridine)(2)(picolinate)] (FIrPic) have pointed to the cleavage of the picolinate as a possible reason for device instability. We reproduced the loss of picolinate and acetylacetonate ancillary ligands in solution by the addition of Br?nsted or Lewis acids. When hydrochloric acid is added to a solution of a [Ir(C^N)(2)(X^O)] complex (C^N = 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (diFppy) and X^O = picolinate (pic) or acetylacetonate (acac)), the cleavage of the ancillary ligand results in the direct formation of the chloro-bridged iridium(III) dimer [{Ir(C^N)(2)(μ-Cl)}(2)]. When triflic acid or boron trifluoride are used, a source of chloride (here tetrabutylammonium chloride) is added to obtain the same chloro-bridged iridium(III) dimer. Then, we advantageously used this degradation reaction for the efficient synthesis of tris-heteroleptic cyclometalated iridium(III) complexes [Ir(C^N(1))(C^N(2))(L)], a family of cyclometalated complexes otherwise challenging to prepare. We used an iridium(I) complex, [{Ir(COD)(μ-Cl)}(2)], and a stoichiometric amount of two different C^N ligands (C^N(1) = ppy; C^N(2) = diFppy) as starting materials for the swift preparation of the chloro-bridged iridium(III) dimers. After reacting the mixture with acetylacetonate and subsequent purification, the tris-heteroleptic complex [Ir(ppy)(diFppy)(acac)] could be isolated with good yield from the crude containing as well the bis-heteroleptic complexes [Ir(ppy)(2)(acac)] and [Ir(diFppy)(2)(acac)]. Reaction of the tris-heteroleptic acac complex with hydrochloric acid gives pure heteroleptic chloro-bridged iridium dimer [{Ir(ppy)(diFppy)(μ-Cl)}(2)], which can be used as starting material for the preparation of a new tris-heteroleptic iridium(III) complex based on these two C^N ligands. Finally, we use DFT/LR-TDDFT to rationalize the impact of the two different C^N ligands on the observed photophysical and electrochemical properties.  相似文献   

9.
Nowadays, the design and development of novel phosphorescent iridium(III) complexes for various optoelectronic applications is a well-recognized area of research. The fascinating photophysical properties of iridium(III) compounds are strongly influenced by the spin-orbit coupling exerted by the iridium(III) core, usually resulting in intense emissions with short excited-state lifetimes, which can be precisely controlled with the aid of molecular engineering of the chelating ligand. This review focuses on the recent developments and state of the art knowledge on phosphorescent iridium(III) compounds, especially on heteroleptic complexes derived from 2,3′-bipyridine class of cyclometalating and ancillary ligands, highlighting the excited state phenomenon behind their emission behavior.  相似文献   

10.
To elucidate the nature of low-lying triplet states and the effect of ligand modifications on the excited-state properties of functional cationic iridium complexes,the solventdependent excited-state dynamics of two phosphorescent cationic iridium (III) complexes,namely[Ir (dph-oxd)2(bpy)]PF6( 1 ) and[Ir (dph-oxd)2(pzpy)]PF6( 2 ),were investigated by femtosecond and nanosecond transient absorption spectroscopy.Upon photoexcitation to the metal-to-ligand charge-transfer (MLCT) states,the excited-state dynamics shows a rapid process (τ=0.7-3 ps) for the formation of solvent stabilized 3MLCT states,which significantly depends on the solvent polarity for both 1 and 2 .Sequentially,a relatively slow process assigned to the vibrational cooling/geometrical relaxation and a long-lived phosphorescent emissive state is identified.Due to the different excited-state electronic structures regulated by ancillary ligands,the solvation-induced stabilization of the 3MLCT state in 1 is faster than that in 2 .The present results provide a better sight of excited-state relaxation dynamics of ligand-related iridium (III) complexes and solvation effects on triplet manifolds.  相似文献   

11.
Six substituted ligands based upon 2-(naphthalen-1-yl)quinoline-4-carboxylate and 2-(naphthalen-2-yl)quinoline-4-carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII, yielding complexes of the form [Ir(C^N)2(bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2′-bipyridine). X-ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis-C,C and trans-N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668–693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand-centred versus MLCT character instilled by the facets of the ligand structure. Triplet–triplet annihilation upconversion (TTA-UC) measurements demonstrate that the complexes based upon the 1-naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6–6.7 %.  相似文献   

12.
An electrospray ionization quadrupole time‐of‐flight mass spectrometer has been utilized to investigate the relative ligand‐binding strengths in a series of heteroleptic‐charged iridium(III) complexes of the general formula [(C^N)2IrIII(S‐tpy)](PF6) by using variable collision energies. Collision‐induced dissociation experiments were performed in order to study the stability of the IrIII complexes that are, for instance, suitable phosphors in light‐emitting electrochemical cells. The ratio of signal intensities belonging to the fragment and the undissociated complex depends on the collision energy applied for the tandem mass spectra (MS/MS) analysis. By defining the threshold collision energy and the point of complete complex dissociation, it is possible to estimate the relative complex stabilities depending on the nature of the coordinated ligands [i.e. type of cyclometalating ligand (C^N), substituents on the S‐shaped terpyridine (S‐tpy)]. The collision energy values differed as a function of the coordination sphere of the IrIII centers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A series of new heteroleptic iridium(III) complexes [Ir(C?N)2(N?N)]PF6 ( 1 ‐ 6 ) (each with two cyclometalating C?N ligands and one neutral N?N ancillary ligand, where C?N = 2‐phenylpyridine (ppy), 5‐methyl‐2‐(4‐fluoro)phenylpyridine (F‐mppy), and N?N = 2,2′‐dipyridyl (bpy), 1,10‐phenanthroline (phen), 4,4′‐diphenyl‐2,2′‐dipyridy (dphphen) were found to have rich photophysical properties. Theoretical calculations are employed for studying the photophysical and electrochemical properties. All complexes are investigated using density functional theory. Excited singlet and triplet states are examined using time‐dependent density functional theory. The low‐lying excited‐state geometries are optimized at the ab initio configuration interaction singles level. Then, the excited‐state properties are investigated in detail, including absorption and emission properties, photoactivation processes. The excited state of complexes is complicated and contains triplet metal‐to‐ligand charge transfer, triplet ligand‐to‐ligand charge transfer simultaneously. Importantly, the absorption spectra and emission maxima can be tuned significantly by changing the N?N ligands and C?N ligands. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

14.
Bis-cyclometalated iridium(iii) complexes [Ir(F(2)ppy)(2)] (), [Ir(F(2)CNppy)(2)] (), [Ir(DMAF(2)ppy)(2)] () and [Ir(MeOF(2)ppy)(2)] () (F(2)ppy = 4',6'-difluoro-2-phenylpyridinate, F(2)CNppy = 5'-cyano-4',6'-difluoro-2-phenylpyridinate, DMAF(2)ppy = 4',6'-difluoro-4-dimethylamino-2-phenylpyridinate, MeOF(2)ppy = 4',6'-difluoro-4-methyl-2-phenylpyridinate and = 3,5-dimethylpyrazole-N-carboxamide) emitting in the sky blue region were synthesized. We studied the effect of the ancillary ligand and the substituents on the cyclometalating ligands on the crystal structures, photophysical and electrochemical properties and the frontier orbitals. Density functional theory (DFT) calculation results indicate that in and the cyclometalating ligands show negligible participation in the HOMO, the ancillary ligand being the main participant along with the Ir(iii) d-orbitals. exhibits the maximum photoluminescence quantum efficiency and radiative emission rates along with the dominant low frequency metal-ligand vibrations and maximum reorganization energy in the excited state. All the substituted complexes show more polar characteristics than , possessing the highest dipole moment among the complexes. The performances of the solution-synthesised organic light emitting devices (OLEDs) of , and doped in a blend of mCP (m-bis(N-carbazolylbenzene)) and polystyrene are studied.  相似文献   

15.
Chen TR  Lee HP  Chen JD 《Inorganic chemistry》2011,50(8):3645-3650
The synthesis and structures of a series of cyclometalated iridium(III) complexes based on benzoxazole derivatives and triphenylphospine are reported. These complexes have a general formula (C^N)(2)Ir(Cl)(pph(3)) [where C^N is a monoanionic cyclometalating ligand, dfpbo = (difluorophenyl)benzoxazolato, pbo = 2-phenylbenzoxazolato, nbo = 2-(2-naphthyl)benzoxazolato, and pph(3) is a triphenylphospine ligand]. The complexes (dfpbo)(2)Ir(Cl)(pph(3)) (2a), (pbo)(2)Ir(Cl)(pph(3)) (2b), and (nbo)(2)Ir (Cl)(pph(3)) (2c) have been structurally characterized by X-ray crystallography. Complex 2a shows facile umpolung in the phenyl rings of the arylphosphine ligand and displays a catalytic propensity for water splitting.  相似文献   

16.
Phosphorescent mono-cyclometalated gold(III) complexes and their possible applications in organic light emitting diodes (OLEDs) can be significantly enhanced with their improved thermal stability by suppressing the reductive elimination of the respective ancillary ligands. A rational tuning of the π-conjugation of the cyclometalating ligand in conjunction with the non-conjugated 5,5′-(1-methylethylidene)bis(3-trifluoromethyl)-1H-pyrazole were used as a strategy to achieve room-temperature phosphorescence emission in a new series of gold(III) complexes. Photophysical studies of the newly synthesised and characterised complexes revealed phosphorescent emission of the complexes at room temperature in solution, thin films when doped in poly(methyl methacrylate) (PMMA) as well as in 2-Me-THF at 77 K. The complexes exhibit highly tuneable emission behaviour with photoluminescent quantum efficiencies up to 22 % and excited state lifetimes in the range of 63–300 μs. Detailed photophysical investigations in combination with DFT and TD-DFT calculations support the conclusion that the emission properties are strongly dictated by both the cyclometalating ligand and the ancillary chelating ligand. Thermogravimetric studies further show that the thermal stability of the AuIII complexes has been drastically enhanced, making these complexes more attractive for OLED applications.  相似文献   

17.
环金属钌配合物具有良好的氧化还原和光物理性质,在诸多光电领域如染料敏化太阳能电池、电致变色、电子转移等方面具有重要应用。环金属钌配合物的合成方法主要包括“后期金属化”、“前期金属化”、“转金属化”三种方法。环金属配合物具有丰富的结构多样性。环金属配合物由环金属配体和辅基配体与金属螯合形成。环金属配体包括NC、NNC、NCN和CCC-类型多齿配体。辅基配体主要包括吡啶、咪唑、三唑、嘧啶等杂环。碳-金属键的引入大大降低了钌配合物的氧化还原电位。通过改变环金属配体和辅基配体的结构,可以对金属的氧化还原电位进行有效调控。金属钌配合物的氧化还原电位对敏化电池的性能以及电子转移的过程具有重要的影响。  相似文献   

18.
Two novel iridium(III) complexes, [Ir(dfppy)(2)(pmc)] and [Ir(ppy)(2)(pmc)] (dfppy = 2-(4',6'-difluoro-phenyl)pyridine, ppy = 1-phenyl-pyridine), were designed and synthesized using 2-carboxyl-pyrimidine (Hpmc) as an ancillary ligand. Single crystals were obtained and characterized by single crystal X-ray diffraction. The tetrametallic complexes {[(C^N)(2)Ir(μ-pmc)](3)EuCl(3)} (C^N = dfppy, ppy) were synthesized using the iridium(III) complexes as "ligands". Photophysical and theoretical studies indicate that [Ir(dfppy)(2)(pmc)] is more suitable for sensitizing the emission of Eu(III) ions than [Ir(ppy)(2)(pmc)].  相似文献   

19.
Studies on the electronic structures and related properties of a series of Co(Ш) complexes have been carried out, using the density functional theory (DFT) at the B3LYP/LanL2DZ level. The effect of the ancillary ligands on their electronic structures, DNA-binding affinities and spectra was revealed. The results show that an ancillary ligand has quite important effect on electronic structures and DNA-binding properties of these Co(Ш) complexes. The ancillary ligand possessing a great conjugated structure can effectively improve the DNA-binding affinity of the complex. Meanwhile, introducing a stronger electronegative N atom on the skeleton of ancillary ligand can obviously reduce the LUMO energy of the complex. Based on these findings, a designed complex 4 can be expected to have the greatest Kb value in complexes 14. So it may be able to control the interaction between the complex and DNA-base-pairs via varying ancillary ligands. In addition, the electronic absorption spectra of these complexes were calculated and simulated in aqueous solution using the time-dependent DFT (TDDFT) method and the effect of the ancillary ligands on the spectra was also explored. The calculated absorption spectra of these complexes in aqueous solution are in a satisfying agreement with the experimental results, and the properties of experimental absorption bands were theoretically explained in detail.  相似文献   

20.
The new heteroleptic iridium(III) complexes (BuOXD)2Ir(tta) and (BuOXD)2Ir(tmd) [BuOXD?=?2-(4-butyloxyphenyl)-5-phenyl[1,3,4]oxadiazolato-N4,C2, tta?=?1,1,1-trifluoro-4-thienylbutane-2,4-dionato, tmd?=?2,2,6,6-tetramethylheptane-3,5-dionato] have been synthesized and characterized. These complexes have two cyclometalated ligands (C^N) and a bidentate diketone ligand (X) [C^N)2Ir(X)], where X is a β-diketone with trifluoromethyl, theonyl or t-butyl groups. The color tuning with the change in electronegativity of substituents in the β-diketones has been studied. Photoluminescence spectra of the complexes showed peak emissions at 523 and 549?nm, respectively. The electroluminescent properties of these complexes have been studied by fabricating multi layer devices with device structure ITO/α-NPD/8% iridium complex doped CBP/BCP/Alq3/LiF/Al. The electroluminescence spectra also showed peak emissions at 526 and 570?nm for (BuOXD)2Ir(tta) and (BuOXD)2Ir(tmd), respectively. These metal complexes showed good thermal stability in air to 340°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号