首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
At 80 K, where the deactivation processes in uranyl luminescence in solutions are temperature independent, the radiationless transition rate depends upon the presence of H2O in the first coordination sphere of the uranyl ion, UO22+. It is found that such radiationless transitions are due to a photophysical intramolecular process.  相似文献   

2.
Herein, we describe the structural investigation of one possible uranyl binding site inside a nonstructured protein. This approach couples spectroscopy, thermodynamics, and theoretical calculations (DFT) and studies the interaction of uranyl ions with a phosphopeptide, thus mimicking a possible osteopontin (OPN) hydroxyapatite growth‐inhibition site. Although thermodynamical aspects were investigated by using time‐resolved laser fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC), structural characterization was performed by extended X‐ray absorption fine structure (EXAFS) at the U LIII‐edge combined with attenuated total reflection Fourier transform infrared (ATR‐FTIR) spectroscopy. From the vibrational and fluorescence spectra, several structural models of a UO22+/peptide complex were developed and subsequently refined by using theoretical calculations to fit the experimental EXAFS obtained. The structural effect of the pH value was also considered under acidic to moderately acidic conditions (pH 1.5–5.5). Most importantly, the uranyl/peptide coordination environment was similar to that of the native protein.  相似文献   

3.
The Raman, resonance Raman and IR spectra of potassium uranyl croconate, UO2(H2O)K2(C5O5)2 were obtained and interpreted. Several croconate modes are split indicating a substantial decrease in the oxocarbon symmetry, as is to be expected from a recent crystallographic investigation, revealing the coordination of the oxocarbon to be two non-equivalent UO2+2 moieties in a monodentate fashion. In terms of vibrational frequency shifts it can be concluded that the UO2+2 moiety behaves as an isolated oscillator.The resonance Raman results suggest that the strong band centered around 450 nm in the UV—vis spectrum should be assigned to a charge transfer transition from the oxocarbon to the uranyl ion. In fact, as resonance is approached, both uranyl and croconate modes are enhanced. It can also be inferred that the chromophore is rather delocalized into the oxocarbon ring, rather than localized in the carbonyl groups as previously observed for other croconate complexes.  相似文献   

4.
To efficiently capture the toxic uranyl ions (UO22+), a new hierarchical micro‐macroporous metal–organic framework was prepared under template‐free conditions, featuring interconnected multi‐nanocages bearing carbonyl groups derived from a semi‐rigid ligand. The material exhibits an unusually high UO22+ sorption capacity of 562 mg g?1, which occurs in an intriguing two‐steps process, on the macropore‐based crystal surface and in the inner nanocages. Notably, the latter is attributed to the cooperative interplay of the shrinkage of the host porous framework induced by uranyl accommodation and the free carbonyl coordination sites, as shown by both single‐crystal X‐ray diffraction and a red‐shift of the infrared [O=UVI=O]2+ antisymmetric vibration band.  相似文献   

5.
The literature indicates a four-fold or six-fold coordination symmetry for UO2+2 in aqueous solution. However, the uranyl ion in crystalline UO2(ClO4)2·7H2O has been found by X-ray diffraction to be coordinated by five water molecules. From the MCD of aqueous UO2(ClO4)2·nH2O we have found evidence for five-fold coordination. A tentative assignment for the excited states in the visible spectrum is also proposed.  相似文献   

6.
We report on the design of a UO22+‐selective electrode based on the use of UO22+ imprinted polymer nanoparticles (IP‐NPs), and its application for the differential pulse adsorptive cathodic stripping voltammetry determination of uranyl ions. A carbon paste electrode was modified with the IP‐NPs, and differential pulse adsorptive cathodic stripping voltammetry was applied as the detection technique after open‐circuit sorption of UO22+ ions. The modified electrode responses to UO22+ was linear in the 0.1 µg L?1 to 10 µg L?1 and in the 0.01 mg L?1 to 10 mg L?1. The method detection limit of the sensor was 0.03 µg L?1.  相似文献   

7.
The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′‐[1,4‐phenylenebis(methylene)]bis(pyridin‐1‐ium‐4‐carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4 resulted in the formation of a novel two‐dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2‐1,1′‐[1,4‐phenylenebis(methylene)]bis(pyridin‐1‐ium‐4‐carboxylate)}di‐μ3‐sulfato‐diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single‐crystal X‐ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+ centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X‐ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.  相似文献   

8.
《中国化学快报》2022,33(7):3451-3455
The extraction complexes of uranyl(VI) in HNO3 to a hydroxyl-functionalized ionic liquid (IL) phase, HOEtmimNTf2 bearing CMPO, were investigated. Three possibly successive extraction complexes, UO2L2+ (L = CMPO), UO2L22+ and UO2L32+, were detected based on variable U/L ratios. Uranyl(VI) prefers to be extracted as complex UO2L32+, combining with the ions from HOEtmimNTf2 to construct a solid material through self-assembly. The thermodynamics of complexes, UO2Lj2+ (j = 1-3), were studied by spectrophotometry and microcalorimetry. All the formation reactions are principally driven by entropy, although a small part of the driving force of complexes UO2L22+ and UO2L32+ comes from enthalpy. Based on the thermodynamic properties for complex UO2L32+, we provide a possible coordination mode in HOEtmimNTf2: the first CMPO molecule coordinates with UO22+ in a bidentate fashion while the others do in a monodentate fashion. The results offer a thermodynamic insight into the formation behaviors of the uranyl(VI)/CMPO complexes involving the special IL HOEtmimNTf2, which is of significance to advance the novel IL extraction strategy.  相似文献   

9.
The polyethylene (PE) membrane was prepared by the radiation-induced grafting of acrylonitrile (AN) onto PE hollow fiber and by the subsequent amidoximation of cyano groups in poly-AN graft chains. The adsorption characteristics of the chelating hollow fiber membrane was examined as the solution of UO2 2+ permeated across the chelating hollow fiber membrane. The inner and outer diameter increased with an increasing grafting yield, whereas, the pure water flux and pore diameter decreased with an increasing grafting yield. The adsorption of UO2 2+ by the chelating hollow fiber membranes increased with an increasing amidoxime group. The adsorbed amount of UO2 2+ in the uranyl acetate solution was higher than that in the uranyl nitrate solution. The adsorbed amount of UO2 2+ is higher than that of Cu2+ when the solution of UO2 2+ and Cu2+ permeated across the chelating membrane, respectively. The adsorption characteristics of UO2 2+ by the amidoxime group-chelating fiber membrane in the presence of Na1+ and Ca2+ showed a high selectivity for UO2 2+ even though there was a high concen-tration of Na1+ and Ca2+ in the inlet solution.  相似文献   

10.
To improve our knowledge on protein targets of uranyl ion (UO22+), we set up a proteomic strategy based on immobilized metal-affinity chromatography (IMAC). The successful enrichment of UO22+-interacting proteins from human kidney-2 (HK-2) soluble cell extracts was obtained using an ion-exchange chromatography followed by a dedicated IMAC process previously described and designed for the uranyl ion. By mass spectrometry analysis we identified 64 proteins displaying varied functions. The use of a computational screening algorithm along with the particular ligand-based properties of the UO22+ ion allowed the analysis and categorization of the protein collection. This profitable approach demonstrated that most of these proteins fulfill criteria which could rationalize their binding to the UO22+-loaded phase. The obtained results enable us to focus on some targets for more in-depth studies and open new insights on its toxicity mechanisms at molecular level.  相似文献   

11.
Presented here are two isostructural uranyl coordination polymers [UO2(EDO)(H2O)]·H2O (1) and [UO2(BDO)(H2O)]·2H2O (2) (EDO2-=ethylene-1,2-dioxamate; BDO2-=butylene-1,2-dioxamate) with identical stepwise zigzag chain structure and distinct interchain hydrogen bonding interaction, prepared from hydrothermal reaction of DEEDO or DEBDO (DEEDO=diethyl ethylene-1,2-dioxamate; DEBDO=diethyl butylene-1,2-dioxamate) with uranyl ions. The monomeric uranyl-based fluorescence emissions of compounds 1 and 2 are red-shifted by about 6 and 5 nm respectively, compared to that of uranyl nitrate hexahydrate. Compound 1 has stronger emission than compound 2, but both their emissions exhibit triple-exponential decay. The photophysics of uranyl oxalate trihydrate was also investigated for comparison. The selective crystallization of compound 1 in alkaline solution was applied to the sequestration of uranyl ions, showing a kinetic preference.  相似文献   

12.
The feasibility of using gold electrodes modified with short-chain ssDNA oligonucleotides for determination of uranyl cation is examined. Interaction between UO22+ and proposed recognition layer was studied by means of voltammetric and quartz crystal microbalance measurements. It was postulated that ssDNA recognition layer functions via strong binding of UO22+ to phosphate DNA backbone. The methylene blue was used as a redox marker for analytical signal generation. Biosensor response was based on the difference in electrochemical signal before and after subjecting it to sample containing uranyl ion. The lower detection limit of 30 nmol L−1 for UO22+ was observed for a sample incubation time of 60 min. Proposed ssDNA-modified electrodes demonstrated good selectivity towards UO22+ against common metal cations, with only Pb2+ and Ca2+ showing considerable interfering effect.  相似文献   

13.
《Analytical letters》2012,45(4):263-272
Abstract

The utility of hydroxy naphthol blue (HNB) as a spectrophotometric and fluorometric reagent for the uranyl ion has been investigated. In phthalate buffer (at a pH of 4.0), UO2 2+ forms a brown complex of low absorptivity with the red form of HNB. By following the decrease in HNB absorbance at 530 nm (which has ε = 4.1 × 103) uranyl ion can be determined to levels as low as 1.1 × 10?6 M (0.30 μg/ml). HNB also emits at 460 nm when excited at 365 nm at these pH values, while the UO2 2+ complex exhibits greatly reduced emission. Examination of the quenching of HNB emission by UO2 2+ allows the determination of uranyl ion to levels as low as 3.2 × 10?6 M (0.86 μg/ml). A 1:1 type complex was formed between UO2 2+ and HNB, and a formation constant of 9.77 × 103 (log K1 = 3.99) was measured for the complex.  相似文献   

14.
A complementary study of hydroxyl radical formation in the depleted uranium (DU)-hydrogen peroxide (H2O2) system and the effect of biosubstances on the system were examined using the spin-trapping method. Hydroxyl radical was formed in the uranyl ion (UO2 2+), 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), and hydrogen peroxide (H2O2) mixture solution. The pseudo first order rate constants of DMPO-OH formation were estimated to be 0.033 s−1 for UO2 2+-H2O2-DMPO solution and 0.153 s−1 for UO2+-H2O2-DMPO solution. The obtained results indicated that the hydroxyl radical formation in the UO2 2+-H2O2 solution could be described as a stepwise reaction process including the reduction of UO2 2+ to UO2 2+ by H2O2 and the Fenton-type reaction of UO2 + with H2O2. Biosubstances, such as proteins, amino acids and saccharides, decreased the DMPO-OH formation, which was caused by the direct hydroxyl radical scavenging and the suppression of hydroxyl radical formation by coupling with uranyl ion.  相似文献   

15.
The preparation, spectroscopic characterization and thermal stability of neutral complexes of uranyl ion, UO2 2+, with phosphonate ligands, such as diphenylphosphonic acid (DPhP), diphenyl phosphate (DPhPO) and phenylphosphonic acid (PhP) are described. The complexes were prepared by a reaction of hydrated uranyl nitrate with appropriate ligands in methanolic solution. The ligands studied and their uranyl complexes were characterized using thermogravimetric and elemental analyses, ESI-MS, IR and UV–Vis absorption and luminescence spectroscopy as well as luminescence lifetime measurements. Compositions of the products obtained dependent on the ligands used: DPhP and DPhPO form UO2L2 type of complexes, whereas PhP forms UO2L complex. Based on TG and DTG curves a thermal stability of the complexes was determined. The complexes UO2PhP·2H2O and UO2(DPhPO)2 undergo one-step decomposition, while UO2PhP · 2H2O is decomposed in a two-step process. The thermal stability of anhydrous uranyl complexes increases in the series: DPhPO < PhP < DPhP. Obtained IR spectra indicate bonding of P–OH groups with uranyl ion. The main fluorescence emission bands and the lifetimes of these complexes were determined. The complex of DPhP shows a green uranyl luminescence, while the uranyl emission of the UO2PhP and UO2(DPhPO)2 complexes is considerably weaker.  相似文献   

16.
Chemiluminescence (CL) accompanying the reaction of U4+ with O2 in 0.0004–0.1M HClO4 was studied. It was found that the electron-excited uranyl ion (UO2 2+)* is the CL emitter. The fact that the reaction rate and the CL yield increase as the solution acidity decreases was explained by different reactivities of the U aq 4+ aquation and the products of its stepwise hydrolysis, UOH3+ and U(OH)2 2+, toward O2. Based on the results of analysis of the chain-radical mechanism of the reaction between U4+ and O2, it was concluded that transfer of an electron from the UO2 + ion to the oxidizing agent (a ·OH radical) is the most plausible elementary step of the reaction of (UO2 2+)* formation. It was found that the reaction rate, as well as the CL yield, increase substantially in the presence of uranyl ion. Catalytic action of UO2 2+ was explained by the formation of a UO2 2+·UO2 + complex, which reduces the rate of the UO2 + disproportionation reaction (UO2 + is an intermediate of the reaction and is involved in chain propagation), and by regeneration of the active center, UO2 +, in the reaction of UO2 2+ with U4+. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1522–1528, September, 2000.  相似文献   

17.
The chemistry of the uranyl ion ([UO2]2+) has evolved remarkably over the past few years, with unexpected reactivity observed that challenge our understanding of this ion, and of actinides in general. This review highlights some recent advances in the field, focussing on the organometallic chemistry of the uranyl moiety, which is not well developed in comparison to lower oxidation states of uranium. The use of uranyl as a catalyst is highlighted and the newly developed supramolecular chemistry is described. The uranyl oxygen atoms have been considered as inert, but recent work has shown that is not necessarily the case and is discussed herein. Finally, reduction to the [UO2]+ ion will be discussed.  相似文献   

18.
The formation of hydrolysed uranyl(VI) species in UO2X zeolites prepared by various methods has been investigated by Raman spectroscopy. Ion-exchange in aqueous (pH>3) and non-aqueous (anhydrous methanol and uranyl nitrate melts) media resulted in the formation of hydroxy-bridged complexes such as [(UO2)3(OH)4]2+, [(UO2)3(OH)5]+, and [(UO2)4(OH)7]+. Ion-exchange in more acidic media (initial pH < 3) was accompanied by the formation of a disordered phase incorporating UO3, following extensive collapse of the zeolite framework structure. Cation speciation in the UO2X system is compared to that in UO2Y zeolites.  相似文献   

19.
Complexation of the uranyl ion (UO22+) and of the peroxouranyl species (UO4) by some polyaminocarboxylate ligands has been investigated in solution (3M NaClO4) at 25°C. The logarithms of the cumulative formation constants of the UO22+ chelates formed are: UO2edta2? (15.65), UO2Hedta? (18.59), (UO2)2edta (20.24); UO2edda (16.02); UO2Hnta (12.19); UO2ida (9.63), UO2H2(ida)2 (23.80). The equilibrium UO22+ + H2O2 ? UO4 + 2H+ has a stability log K = ?3.99. The peroxocomplexes formed are UO4Hedda? (14.81, expressed from UO22+ and H2O2) and UO4Hnta2? (8.50). Solution structures of the chelates are proposed.  相似文献   

20.
Decasodium uranyl hexa­sulfate trihydrate, Na10[(UO2)(SO4)4](SO4)2·3H2O, contains an unusual uranyl sulfate cluster with the composition [(UO2)(SO4)4]6?. The cluster is composed of a uranyl pentagonal bipyramid and four sulfate tetrahedra. Three sulfate tetrahedra are linked to the uranyl pentagonal bipyramid by the sharing of vertices, and the other shares an equatorial edge of the uranyl pentagonal bipyramid. The uranyl sulfate clusters occur in layers parallel to (010). The structure also contains two isolated symmetrically distinct sulfate tetrahedra, which also occur in layers parallel to (010). The uranyl sulfate clusters and isolated sulfate tetrahedra are linked through bonds to Na+ cations, and by hydrogen bonding involving the water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号