首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tandem dual C−H amination of tetrahydroquinoxalines with free amines under aerobic copper catalysis conditions has been demonstrated. The synthetic protocol proceeds with good substrate and functional group compatibility, mild reaction conditions, short reaction time, the use of the naturally abundant [Cu]/O2 catalyst system, excellent chemoselectivity and synthetic efficiency, and with no need for the pre-installation of specific aminating agents, which offers a practical platform for the rapid and diverse synthesis of diaminoquinoxalines. Moreover, this work has shown the potential of single-electron-oxidation-induced C−H functionalization of N-heterocycles, and its application in the development of optoelectronic materials.  相似文献   

2.
Traditionally, cross-dehydrogenative coupling (CDC) leads to C−N bond formation under basic and oxidative conditions and is proposed to proceed via a two-electron bond formation mediated by carbenium ions. However, the formation of such high-energy intermediates is only possible in the presence of strong oxidants, which may lead to undesired side reactions and poor functional group tolerance. In this work we explore if oxidation under basic conditions allows the formation of three-electron bonds (resulting in “upconverted” highly-reducing radical-anions). The benefit of this “upconversion” process is in the ability to use milder oxidants (e. g., O2) and to avoid high-energy intermediates. Comparison of the two- and three-electron pathways using quantum mechanical calculations reveals that not only does the absence of a strong oxidant shut down two-electron pathways in favor of a three-electron path but, paradoxically, weaker oxidants react faster with the upconverted reductants by avoiding the inverted Marcus region for electron transfer.  相似文献   

3.
N-arylcarbazole structures are important because of their prevalence in natural products and functional OLED materials. C−H amination of arenes has been widely recognized as the most efficient approach to access these structures. Conventional strategies involving transition-metal catalysts suffer from confined substrate generality and the requirement of exogenous oxidants. Organocatalytic enantioselective C–N chiral axis construction remains elusive. Presented here is the first organocatalytic strategy for the synthesis of novel axially chiral N-arylcarbazole frameworks by the assembly of azonaphthalenes and carbazoles. This reaction accommodates broad substrate scope and gives atropisomeric N-arylcarbazoles in good yields with excellent enantiocontrol. This approach not only offers an alternative to metal-catalyzed C–N cross-coupling, but also brings about opportunities for the exploitation of structurally diverse N-aryl atropisomers and OLED materials.  相似文献   

4.
n-Type conjugated polymers (CPs) are crucial in the applications of organic electronics. Direct coupling of electron-deficient C−H monomer via selective C−H activation, namely C−H/C−H oxidative direct arylation polycondensation (Oxi-DArP), is an ideal approach toward such CPs. Herein, Oxi-DArP is firstly adopted to synthesize a high-performance n-type CP using a newly developed monomer, i.e., 3,6-di(thiazol-5-yl)-diketopyrrolopyrrole (Tz-5-DPP). Tz-5-DPP based homopolymer PTz - 5 - DPP with a molecular weight of 22 kDa has been synthesized via Oxi-DArP. After n-doping, PTz - 5 - DPP films exhibited electric conductivity values up to 8 S cm−1 and power factors (PFs) up to 106 μW m−1 K−2. Notably, this PF value is the highest for n-type polymer thermoelectric materials to date. The Oxi-DArP synthesis and the excellent n-type performance of the polymer make this work an important step toward the straightforward and sustainable preparation of high-performance n-type polymer semiconductors.  相似文献   

5.
A rhodium(III)-catalyzed C6-selective dehydrogenative cross-coupling of 2-pyridones with thiophenes was developed for the synthesis of 6-thiophenyl pyridin-2(1H)-one derivatives. In this reaction, the excellent site selectivity was controlled by the 2-pyridyl directing group on the nitrogen of the pyridone ring. Control experiments indicated that the N-pyridyl was essential for the transformation. To the best of our knowledge, this procedure is the first successful example of the direct C6 heteroarylation of 2-pyridones with electron-rich thiophene derivatives. 4-Pyridone was also used as substrate to generate the corresponding C2 heteroarylated product. Moreover, this pyridyl directing group was readily removable to generate the biheteroaryl structures with a free N−H group.  相似文献   

6.
1,3-Diamines are an important class of compounds that are broadly found in natural products and are also widely used as building blocks in organic synthesis. Although the intramolecular C−H amination of N-alkylsulfamide derivatives is a reliable method for the construction of 1,3-diamine structures, the majority of these methods involve the use of a transition-metal catalyst. We herein report on a new transition-metal-free method using tert-butyl hypoiodite (t-BuOI) or N-iodosuccinimide (NIS), enabling secondary non-benzylic and tertiary C−H amination reactions to proceed. The cyclic sulfamide products can be easily transformed into 1,3-diamines. Mechanistic investigations revealed that amination reactions using t-BuOI or NIS each proceed via different pathways.  相似文献   

7.
Post-polymerization modification (PPM) via direct C−H functionalization is a powerful synthetic strategy to convert polymer feed-stocks into value-added products. We found that a metal-free, Se-catalyzed allylic C−H amination provided an efficient method for PPM of polynorbornenes (PNBs) produced via ring-opening metathesis polymerization. Inherent to the mechanism of the allylic amination, PPM on PNBs preserved the alkene functional groups along the polymer backbone, while also avoiding transposition of the double bonds. Amination using a series of aryl sulfonamides led to good control over the degree of functionalization, access to a range of functionalities, and tunable thermal properties from the resulting polymers.  相似文献   

8.
The factors controlling the oxidative addition of C−C and C−H bonds in arenes mediated by AlI have been computationally explored by means of Density Functional Theory calculations. To this end, we compared the processes involving benzene, naphthalene and anthracene which are promoted by a recently prepared anionic AlI-carbenoid. It is found that this species exhibits a strong tendency to oxidatively activate C−H bonds over C−C bonds, with the notable exception of benzene, where the C−C bond activation is feasible but only under kinetic control reaction conditions. State-of-the-art computational methods based on the combination of the Activation Strain Model of reactivity and the Energy Decomposition Analysis have been used to rationalize the competition between both bond activation reactions as well as to quantitatively analyze in detail the ultimate factors controlling these transformations.  相似文献   

9.
We describe the first thiourea-catalyzed C−F bond activation. The use of a thiourea catalyst and Ti(OiPr)4 as a fluoride scavenger allows the amination of benzylic fluorides to proceed in moderate to excellent yields. Preliminary results with S- and O-based nucleophiles are also presented. DFT calculations reveal the importance of hydrogen bonds between the catalyst and the fluorine atom of the substrate to lower the activation energy during the transition state.  相似文献   

10.
Herein, a direct C8-arylation reaction of 1-amidonaphthalenes is described. By using diaryliodonium salts as arylating agents, the palladium-catalyzed C−H activation reaction showed perfect C8 regioselectivity and a wide functional group tolerance. In most cases, the desired polyaromatic compounds were isolated in good to excellent yields. To explain the observed regioselectivity, DFT calculations were performed and highlighted the crucial role of the amide directing group. Finally, the utility of this method is showcased by the synthesis of benzanthrone derivatives.  相似文献   

11.
Transition-metal-catalyzed oxidative C−H amination reactions are among the most attractive topics in organic synthesis to construct nitrogen-containing motifs. The challenge is that most of these reactions employed stoichiometric oxidants to achieve satisfied catalytic efficiencies. Herein, we report a Pd(II)/LA-catalyzed (LA: Lewis acid) oxidative C−H amination reaction of 2-acetaminobiphenyls to construct carbazoles by using dioxygen balloon as the sole oxidant source, and the presence of LA sharply improved the catalytic efficiency of Pd(OAc)2. Remarkably, in certain cases, the deacetylation of the annulation product happened under standard conditions to afford free carbazoles as the final product. The H/D exchange studies confirmed the reversibility of C−H activation and also disclosed multiple C−H activation sites by using −NAc and −NTs as the directing groups. In addition, the palladacycle compound was identified through 1H NMR characterizations and proved to be the intermediate prior to the carbazole formation.  相似文献   

12.
An unprecedented method that makes use of the cooperative interplay between molecular iodine and photoredox catalysis has been developed for dual light-activated intramolecular benzylic C−H amination. Iodine serves as the catalyst for the formation of a new C−N bond by activating a remote C −H bond (1,5-HAT process) under visible-light irradiation while the organic photoredox catalyst TPT effects the reoxidation of the molecular iodine catalyst. To explain the compatibility of the two involved photochemical steps, the key N−I bond activation was elucidated by computational methods. The new cooperative catalysis has important implications for the combination of non-metallic main-group catalysis with photocatalysis.  相似文献   

13.
The efficient production of many medicinally or synthetically important starting materials suffers from wasteful or toxic precursors for the synthesis. In particular, the aromatic non-protected primary amine function represents a versatile synthetic precursor, but its synthesis typically requires toxic oxidizing agents and transition metal catalysts. The twofold electrochemical amination of activated benzene derivatives via Zincke intermediates provides an alternative sustainable strategy for the formation of new C−N bonds of high synthetic value. As a proof of concept, we use our approach to generate a benzoxazinone scaffold that gained attention as a starting structure against castrate-resistant prostate cancer. Further improvement of the structure led to significantly increased cancer cell line toxicity. Thus, exploiting environmentally benign electrooxidation, we present a new versatile and powerful method based on direct C−H activation that is applicable for example the production of medicinally relevant compounds.  相似文献   

14.
A room temperature, visible-light-promoted and redox neutral direct C−H amination of glycine and peptides has been firstly accomplished by using N-acyloxyphthalimide or -succinimide as nitrogen-radical precursor. The present strategy provides ways to introduce functionalities such as N-acyloxyphthalimide or -succinimide specifically to terminal glycine segment of peptides. Herein, mild conditions and high functional-group tolerance allow the preparation of non-natural α-amino acids and modification of corresponding peptides in this way.  相似文献   

15.
Despite major advances, organometallic C−H transformations are dominated by precious 5d and 4d transition metals, such as iridium, palladium and rhodium. In contrast, the unique potential of less toxic Earth-abundant 3d metals has been underexplored. While iron is the most naturally abundant transition metal, its use in oxidative, organometallic C−H activation has faced major limitations due to the need for superstoichiometric amounts of corrosive, cost-intensive DCIB as the sacrificial oxidant. To fully address these restrictions, we describe herein the unprecedented merger of electrosynthesis with iron-catalyzed C−H activation through oxidation-induced reductive elimination. Thus, ferra- and manganaelectro-catalyzed C−H arylations were accomplished at mild reaction temperatures with ample scope by the action of sustainable iron catalysts, employing electricity as a benign oxidant.  相似文献   

16.
Allylamines are important building blocks in the synthesis of bioactive compounds. The direct coupling of allylic C−H bonds and commonly available amines is a major synthetic challenge. An allylic C−H amination of 1,4-dienes has been accomplished by palladium catalysis. With aromatic amines, branch-selective allylic aminations are favored to generate thermodynamically unstable Z-allylamines. In addition, more basic aliphatic cyclic amines can also engage in the reaction, but linear dienyl allylic amines are the major products.  相似文献   

17.
A facile method to oxidatively trimerize phenols using a catalytic aerobic copper system is described. The mechanism of this transformation was probed, yielding insight that enabled cross-coupling trimerizations. With this method, the natural product pyrolaside B was synthesized for the first time. The key strategy used for this novel synthesis is the facile one-step construction of a spiroketal trimer intermediate, which can be selectively reduced to give the natural product framework without recourse to stepwise Ullmann- and Suzuki-type couplings. As a result, pyrolaside B can be obtained expeditiously in five steps and 16 % overall yield. Three other analogues were synthesized, thus highlighting the utility of the method, which provides new accessibility to this area of chemical space. A novel xanthene was also synthesized through controlled Lewis acid promoted rearrangement of a spiroketal trimer.  相似文献   

18.
The cleavage of a C−C bond is a complexity generating process, which complements oxidation and cyclisation events in the biosynthesis of terpenoids. This process leads to increased structural diversity in a cluster of related secondary metabolites by modification of the parent carbocyclic core. In this review, we highlight the diversifying effect of C−C bond cleavage by examining the literature related to seco-labdanes—a class of diterpenoids arising from such C−C bond cleavage events.  相似文献   

19.
9-Substituted carbazoles are widely used units in materials science, and their oxidative reactions have been utilized for the synthesis and characterization of polymers. Though the oxidative mechanism of carbazoles has been known for a few decades, structural definition has remained difficult, because their polymers are generally insoluble with incomplete characterization and unknown dependence of the electrochemical potentials. The oxidative reactions of 9-substituted carbazoles should be carefully considered under specific oxidative conditions; otherwise, structure definitions could be wrong, because the IR and NMR spectra used previously cannot quantitatively analyze 3,3′-coupling and 6,6′-coupling of carbazoles. In this review, the best understanding of the C3−C3′ and C6−C6′ oxidative couplings of 9-substituted carbazoles is presented, and the benefit of these oxidative reactions from the viewpoints of electrochemical synthesis, film engineering, and the synthesis and processing of polymers is highlighted.  相似文献   

20.
Here we report the use of a base metal complex [(tBupyrpyrr2)Fe(OEt2)] ( 1 -OEt2) (tBupyrpyrr22−=3,5-tBu2-bis(pyrrolyl)pyridine) as a catalyst for intermolecular amination of Csp3−H bonds of 9,10-dihydroanthracene ( 2 a ) using 2,4,6-trimethyl phenyl azide ( 3 a ) as the nitrene source. The reaction is complete within one hour at 80 °C using as low as 2 mol % 1 -OEt2 with control in selectivity for single C−H amination versus double C−H amination. Catalytic C−H amination reactions can be extended to other substrates such as cyclohexadiene and xanthene derivatives and can tolerate a variety of aryl azides having methyl groups in both ortho positions. Under stoichiometric conditions the imido radical species [(tBupyrpyrr2)Fe{=N(2,6-Me2-4-tBu-C6H2)] ( 1 -imido) can be isolated in 56 % yield, and spectroscopic, magnetometric, and computational studies confirmed it to be an S = 1 FeIV complex. Complex 1 -imido reacts with 2 a to produce the ferrous aniline adduct [(tBupyrpyrr2)Fe{NH(2,6-Me2-4-tBu-C6H2)(C14H11)}] ( 1 -aniline) in 45 % yield. Lastly, it was found that complexes 1 -imido and 1 -aniline are both competent intermediates in catalytic intermolecular C−H amination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号