首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The combination of cytotoxic amino-BODIPY dye and 2-phenyl-3-hydroxy-4(1H)-quinolinone (3-HQ) derivatives into one molecule gave rise to selective activity against lymphoblastic or myeloid leukemia and the simultaneous disappearance of the cytotoxicity against normal cells. Both species′ conjugation can be realized via a disulfide linker cleavable in the presence of glutathione characteristic for cancer cells. The cleavage liberating the free amino-BODIPY dye and 3-HQ derivative can be monitored by ratiometric fluorescence or by the OFF-ON effect of the amino-BODIPY dye. A similar cytotoxic activity is observed when the amino-BODIPY dye and 3-HQ derivative are connected through a non-cleavable maleimide linker. The work reports the synthesis of several conjugates, the study of their cleavage inside cells, and cytotoxic screening.  相似文献   

2.
纤维素是木质纤维素生物质中最为丰富的组分,将其催化转化制备高附加值化学品在生物质资源化利用中占据极为重要的一席之地。由于纤维素中氧含量过高,需选择性地脱除部分氧原子才可获得满足当前化学工业对各类高值化学品的要求。近年来,针对纤维素以及由其衍生的关键平台分子葡萄糖和5-羟甲基糠醛(HMF)等催化脱氧的研究已引起广泛关注,并取得诸多重要进展。在此,我们总结了具有代表性的多相催化剂体系,讨论了利用氢解或脱水脱氧策略分别将纤维素和葡萄糖等分子中一个或多个C―O键裁剪制备乙醇、烯烃或己二酸等的研究。我们还着重介绍了HMF和其衍生的呋喃化合物选择性剪切C―OH/C=O键或呋喃环中的C―O―C键分别制备二甲基呋喃和1, 6-己二醇等催化体系。此外,对各多相催化剂的作用机制和特定C―O断键机理也分别进行了探讨,以期深入理解纤维素及其衍生物的催化脱氧反应。  相似文献   

3.
Biomass, as a renewable carbon resource in nature, has been considered as an ideal starting feedstock to produce various valuable chemicals, fuels, and materials, and thus, can help build a sustainable chemical industry. Because cellulose is one of the richest components in lignocellulosic biomass, the efficient transformation of cellulose plays a crucial role in biomass utilization. However, there are many oxygen-containing groups in cellulose, and therefore, the selective removal of particular functional groups from cellulose becomes an essential step in the synthesis of the chemicals or fuels that can meet the requirements set by current chemical industries. In the past decades, several efficient catalytic systems have been developed to selectively split the C―O bonds inside cellulose and its derivatives, thereby producing various valuable chemicals. In this review article, we highlight recent progress made in the selective deoxygenation of cellulose and its derived key platforms such as glucose and 5-hydroxymethyl furfural (HMF) into ethanol, dimethyl furfural (DMF), 1, 6-hexanediol (1, 6-HD), and adipic acid. The selection of these reactions is primarily because these chemicals are of great significance in chemical industries. More importantly, the formation of these chemicals represents the cleavage of different C―O bonds in biomass molecules. For instance, the synthesis of ethanol requires cleaving of only one C―O bond and two C―C bonds of the glucose unit inside cellulose. If two or more C―O bonds in the sugar or sugar acids are cleaved, olefins, oxygen-reduced sugars, and adipic acid will be attained. HMF has a furan ring linked by hydroxyl/carbonyl groups, and hence, either a furanic compound (e.g., DMF) or linear products (e.g., 1, 6-HD and adipic acid) can be synthesized by selective removal of hydroxyl/carbonyl oxygen or ring oxygen atoms. This article focuses on the selective cleavage of particular C―O bonds via heterogeneous catalysis. Efficient catalytic systems using hydrogenolysis and/or deoxydehydration strategies for these transformations are discussed. Moreover, the functions of typical catalysts and reaction mechanisms are presented to obtain insight into the C―O bond cleavage in these biomass molecules. Additionally, other factors such as reaction conditions that also influence the deoxygenation performance are analyzed. We hope that these knowledge gained on the catalytic deoxygenation of cellulose and its derived platforms will promote the rational design of effective strategies or catalysts in the future utilization of lignocellulosic biomass.  相似文献   

4.
This review article focuses on the molecular aspects of DNA cleavage by synthetic chemical nucleases (transition metal complexes endowed with redox properties and DNA affinity) and natural drugs (cytotoxic agents such as bleomycins or enediynes). Unlike deoxyribonucleases, which catalyze the nucleophilic attack of water on the phosphorus atom of a particular phosphodiester entity, these nonhydrolytic DNA-cleavers are able to oxidize the sugar units, generally by hydrogen atom abstraction. Examples of oxidative attack on each of the five different C? H bonds of deoxyribose are known, depending on the nature, structure, type of activation, or mode of DNA interaction of the DNA-cleaver. Further evolution at the site of the initial lesion leads to the release of bases, oxidized deoxyribose units, or oxidized sugar fragments appended to the base or the terminal phosphate. In most cases the loss of a part (at least) of a nucleoside, with the concomitant loss of one base information, primarily induces the cleavage of the DNA strand. For both types of DNA cleavage reagents studied within the two last decades, the modes of activation and DNA binding are presented, as well as the details on the mechanism of deoxyribose oxidative degration. Because of the need for highly efficient and highly specific reagents, the development of new artificial and selective DNA cleavers, supported by an improved knowledge of these different mechanisms of DNA cleavage, is to-day a challenging area in the rational design of antitumoral or antiviral agents, as well as in the field of molecular biology.  相似文献   

5.
化学战剂,包括神经性毒剂(如沙林、VX)和糜烂性毒剂(如芥子气),属于剧毒化学品,能够严重危害国家安全和环境安全.因此,针对各类化学战剂,开发简单、快速、可便携化、高灵敏度和高选择性的荧光检测技术具有重要的意义.本文综述了近年来国内外荧光法检测化学战剂的研究进展,并对该领域所面临的挑战和未来发展方向进行了总结和展望.  相似文献   

6.
The azide-alkyne cycloaddition provides a powerful tool for bio-orthogonal labeling of proteins, nucleic acids, glycans, and lipids. In some labeling experiments, e.g., in proteomic studies involving affinity purification and mass spectrometry, it is convenient to use cleavable probes that allow release of labeled biomolecules under mild conditions. Five cleavable biotin probes are described for use in labeling of proteins and other biomolecules via azide-alkyne cycloaddition. Subsequent to conjugation with metabolically labeled protein, these probes are subject to cleavage with either 50 mM Na(2)S(2)O(4), 2% HOCH(2)CH(2)SH, 10% HCO(2)H, 95% CF(3)CO(2)H, or irradiation at 365 nm. Most strikingly, a probe constructed around a dialkoxydiphenylsilane (DADPS) linker was found to be cleaved efficiently when treated with 10% HCO(2)H for 0.5 h. A model green fluorescent protein was used to demonstrate that the DADPS probe undergoes highly selective conjugation and leaves a small (143 Da) mass tag on the labeled protein after cleavage. These features make the DADPS probe especially attractive for use in biomolecular labeling and proteomic studies.  相似文献   

7.
Tumor-targeted drug delivery is highly important for improving chemotherapy, as it reduces the dose of cytotoxic agents and minimizes the death of healthy tissues. Towards this goal, a conjugate was synthesized of gossypol and a MCF-7 cancer cell specific CPP (cell penetrating peptide), thus providing a selective drug delivery system. Utilizing the aldehyde moiety of gossypol, the tumor homing CPP RLYMRYYSPTTRRYG was attached through a semi-labile imine linker, which was cleaved in a traceless fashion under aqueous conditions and had a half-life of approximately 10 hours. The conjugate killed MCF-7 cells to a significantly greater extent than HeLa cells or healthy fibroblasts.  相似文献   

8.
The (2-phenyl-2-trimethylsilyl)ethyl-(PTMSEL) linker represents a novel fluoride-sensitive anchor for the solid-phase synthesis of protected peptides and glycopeptides. Its cleavage is achieved under almost neutral conditions using tetrabutylammonium fluoride trihydrate in dichloromethane thus allowing the construction of complex molecules sensitive to basic and acidic media commonly required for the cleavage of standard linker systems. The advantages of the PTMSEL linker are demonstrated in the synthesis of glycopeptides from the liver intestine (LI)-cadherin and the mucin MUC1, bearing carbohydrate moieties such as N-linked chitobiose or O-linked sialyl-T(N)-residues. The synthesis of these types of glycopeptides is difficult because they are prone to secondary structure formation during the synthesis on the solid phase as well as in the completely deprotected form. Using the PTMSEL linker these molecules are accessible by automated synthesis according to the Fmoc strategy without frequently observed side reactions such as aspartimide or diketopiperazine formation.  相似文献   

9.
Noncovalent interactions are ubiquitous in ternary systems involving metal ions, DNA/RNA, and proteins and represent a structural motif for design of selective inhibitors of biological function. This contribution shows that small molecules containing platinated purine nucleobases mimic the natural DNA(RNA)-tryptophan recognition interaction of zinc finger peptides, specifically the C-terminal finger of HIV NCp7 protein. Interaction with platinum results in Zn ejection from the peptide accompanied by loss of tertiary structure. Targeting the NCp7-DNA interaction for drug design represents a conceptual advance over electrophiles designed for chemical attack on the zinc finger alone. These results demonstrate examples of a new platinum structural class targeting specific biological processes, distinct from the bifunctional DNA-DNA binding of cytotoxic agents like cisplatin. The results confirm the validity of a chemical biological approach for metallodrug design for selective ternary DNA(RNA)-protein interactions.  相似文献   

10.
We have synthesized a homobifunctional active ester cross‐linking reagent containing a TEMPO (2,2,6,6‐tetramethylpiperidine‐1‐oxy) moiety connected to a benzyl group (Bz), termed TEMPO‐Bz‐linker. The aim for designing this novel cross‐linker was to facilitate MS analysis of cross‐linked products by free radical initiated peptide sequencing (FRIPS). The TEMPO‐Bz‐linker was reacted with all 20 proteinogenic amino acids as well as with model peptides to gain detailed insights into its fragmentation mechanism upon collision activation. The final goal of this proof‐of‐principle study was to evaluate the potential of the TEMPO‐Bz‐linker for chemical cross‐linking studies to derive 3D‐structure information of proteins. Our studies were motivated by the well documented instability of the central NO―C bond of TEMPO‐Bz reagents upon collision activation. The fragmentation of this specific bond was investigated in respect to charge states and amino acid composition of a large set of precursor ions resulting in the identification of two distinct fragmentation pathways. Molecular ions with highly basic residues are able to keep the charge carriers located, i.e. protons or sodium cations, and consequently decompose via a homolytic cleavage of the NO―C bond of the TEMPO‐Bz‐linker. This leads to the formation of complementary open‐shell peptide radical cations, while precursor ions that are protonated at the TEMPO‐Bz‐linker itself exhibit a charge‐driven formation of even‐electron product ions upon collision activation. MS3 product ion experiments provided amino acid sequence information and allowed determining the cross‐linking site. Our study fully characterizes the CID behavior of the TEMPO‐Bz‐linker and demonstrates its potential, but also its limitations for chemical cross‐linking applications utilizing the special features of open‐shell peptide ions on the basis of selective tandem MS analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A new pro‐fluorescent probe aimed at a HTS assay of scavengers is able to selectively and efficiently cleave the P? S bond of organophosphorus nerve agents and by this provides non‐toxic phosphonic acid has been designed and synthesised. The previously described pro‐fluorescent probes were based on a conventional activated P? Oaryl bond cleavage, whereas our approach uses a self‐immolative linker strategy that allows the detection of phosphonothioase activity with respect to a non‐activated P? Salkyl bond. Further, we have also developed and optimised a high‐throughput screening assay for the selection of decontaminants (chemical or biochemical scavengers) that could efficiently hydrolyse highly toxic V ‐type nerve agents. A preliminary screening, realised on a small α‐nucleophile library, allowed us to identify some preliminary “hits”, among which pyridinealdoximes, α‐oxo oximes, hydroxamic acids and, less active but more original, amidoximes were the most promising. Their selective phosphonothioase activity has been further confirmed by using PhX as the substrate, and thus they offer new perspectives for the synthesis of more potent V nerve agent scavengers.  相似文献   

12.
Traditional cancer chemotherapy is often accompanied by systemic toxicity to the patient. Monoclonal antibodies against antigens on cancer cells offer an alternative tumor‐selective treatment approach. However, most monoclonal antibodies are not sufficiently potent to be therapeutically active on their own. Antibody–drug conjugates (ADCs) use antibodies to deliver a potent cytotoxic compound selectively to tumor cells, thus improving the therapeutic index of chemotherapeutic agents. The recent approval of two ADCs, brentuximab vedotin and ado‐trastuzumab emtansine, for cancer treatment has spurred tremendous research interest in this field. This Review touches upon the early efforts in the field, and describes how the lessons learned from the first‐generation ADCs have led to improvements in every aspect of this technology, i.e., the antibody, the cytotoxic compound, and the linker connecting them, leading to the current successes. The design of ADCs currently in clinical development, and results from mechanistic studies and preclinical and clinical evaluation are discussed. Emerging technologies that seek to further advance this exciting area of research are also discussed.  相似文献   

13.
This paper deals with two (main) problems of specific gold etching from parts of industrial equipment (e.g., supporting inserts into chambers for physical or chemical vapor deposition). First part of the paper is focused on selective etching of gold from aluminum substrates. Selectivity of the reaction, i.e. leaving substrates intact, is crucial. For this reason, the environmentally friendly and safe method of etching gold in a thiourea solution was tested. This method, while well described in literature, does not preserve various substrates (e.g., aluminum, stainless steel). The main goal of this part of the paper was to understand the mechanism of the reaction and to improve the reaction selectivity towards the aluminum alloy substrate. Thus, different acidifying agents were tested. Second part of the paper is focused on recovery (reduction) of gold from thiourea solutions. Chemical, electrochemical, and biological reduction were tested for gold recovery.  相似文献   

14.
[reaction: see text]. We have previously described a diastereofacially selective 1,3-dipolar cycloaddition reaction of isomünchnones with vinyl ethers. While adapting this methodology for solid phase synthesis, we discovered a chemoselective and self-promoted linker aminolysis that provides liberated product in high purity, at a significantly enhanced rate. Herein we describe the implementation of a chiral auxiliary as a solid-phase linker, the detailed investigation of its unique aminolysis, and the utility of this cleavage within a chemical diversity format.  相似文献   

15.
Described herein is a new formylacetal (CH2) linker for immobilization of small molecules onto a soluble-polymer support, poly(ethylene glycol) ω-monomethyl ether (MPEG), and its application to saccharide synthesis. This small linker allows immobilization of a hindered hydroxy group such as the 4-hydroxy group of glucose onto MPEG. The linker is stable under several reaction conditions including glycosylation. Removal of this support was found to be achieved through cleavage of the CH2 linker either by a Lewis acid (TMSI or Ce(OTf)x) or a Brønsted acid (trifluoroacetic acid) in moderate to good yields. In combination with solid acid catalyst, simpler operations became possible during the working-up and purification processes.  相似文献   

16.
The surface-induced dissociation (SID) of six model peptides containing either methionine sulfoxide or aspartic acid (GAILM(O)GAILR, GAILM(O)GAILK, GAILM(O)GAILA, GAILDGAILR, GAILDGAILK, and GAILDGAILA) have been studied using a specially configured Fourier transform ion-cyclotron resonance mass spectrometer (FT-ICR MS). In particular, we have investigated the energetics and dynamics associated with (i) preferential cleavage of the methionine sulfoxide side chain via the loss of CH3SOH (64 Da), and (ii) preferential cleavage of the amide bond C-terminal to aspartic acid. The role of proton mobility in these selective bond cleavage reactions was examined by changing the C-terminal residue of the peptide from arginine (nonmobile proton conditions) to lysine (partially mobile proton conditions) to alanine (mobile proton conditions). Time- and energy-resolved fragmentation efficiency curves (TFECs) reveal that selective cleavages due to the methionine sulfoxide and aspartic acid residues are characterized by slow fragmentation kinetics. RRKM modeling of the experimental data suggests that the slow kinetics is associated with large negative entropy effects and these may be due to the presence of rearrangements prior to fragmentation. It was found that the Arrhenius pre-exponential factor (A) for peptide fragmentations occurring via selective bond cleavages are 1-2 orders of magnitude lower than nonselective peptide fragmentation reactions, while the dissociation threshold (E0) is relatively invariant. This means that selective bond cleavage is kinetically disfavored compared to nonselective amide bond cleavage. It was also found that the energetics and dynamics for the preferential loss of CH3SOH from peptide ions containing methionine sulfoxide are very similar to selective C-terminal amide bond cleavage at the aspartic acid residue. These results suggest that while preferential cleavage can compete with amide bond cleavage energetically, dynamically, these processes are much slower compared to amide bond cleavage, explaining why these selective bond cleavages are not observed if fragmentation is performed under mobile proton conditions. This study further affirms that fragmentation of peptide ions in the gas phase are predominantly governed by entropic effects.  相似文献   

17.
Various soluble polystyrene supports with fluorinated spacer or linker were prepared and studied by (19)F NMR for their use in LPOS reaction monitoring. Among three types of systems studied, the perfluoro Wang linker was found to be most efficient for this purpose. Substrates could be easily anchored to and cleaved from this new support-bound linker. The anchoring of the linker and the substrates on the polymer led to significant changes in the fluorine resonances. Therefore, the progress of these reactions could be both monitored and quantified. On the other hand, the chemical transformations on the anchored substrates led only to moderate changes in the fluorine resonances. Nevertheless, the reaction progress could also be monitored in this case. After cleavage of products, the polymer supports were recovered without loss in loading. Membrane separation technology was used to purify some polymer-bound products as well as to obtain the polymer-free cleaved product.  相似文献   

18.
Many fields in chemical biology and synthetic biology require effective bioconjugation methods to achieve their desired functions and activities. Among such biomolecule conjugates, antibody–drug conjugates (ADCs) need a linker that provides a stable linkage between cytotoxic drugs and antibodies, whilst conjugating in a biologically benign, fast and selective fashion. This review focuses on how the development of novel organic synthesis can solve the problems of traditional linker technology. The review shall introduce and analyse the current developments in the modification of native amino acids on peptides or proteins and their applicability to ADC linker. Thereafter, the review shall discuss in detail each endogenous amino acid''s intrinsic reactivity and selectivity aspects, and address the research effort to construct an ADC using each conjugation method.

The review shall introduce and analyse the current developments in the chemical modification of native amino acids on peptides or proteins and their applicability to ADC linkers.  相似文献   

19.
On the role(s) of additives in bioinspired silicification   总被引:3,自引:0,他引:3  
Biological organisms are able to direct the formation of patterned and hierarchical biomineral structures. Extractable organic materials have been found entrapped in diatom, sponge and plant biosilica, some of which have been isolated by selective chemical dissolution methods and their composition and structure studied. Information gained from the bioextracts has inspired materials chemists to design biomimetic analogues and develop bioinspired synthetic schemes for silica formation. The results obtained from bioinspired silicification investigations are hypothesised to arise from specific modes of action of the organic additives, which are described in this review. Specifically, additives in bioinspired silicification act either as catalysts, aggregation promoting agents or structure-directing agents or more typically, exhibit a combination of these behaviours.  相似文献   

20.
The site‐specific cleavage of peptide bonds is an important chemical modification of biologically relevant macromolecules. The reaction is not only used for routine structural determination of peptides, but is also a potential artificial modulator of protein function. Realizing the substrate scope beyond the conventional chemical or enzymatic cleavage of peptide bonds is, however, a formidable challenge. Here we report a serine‐selective peptide‐cleavage protocol that proceeds at room temperature and near neutral pH value, through mild aerobic oxidation promoted by a water‐soluble copper–organoradical conjugate. The method is applicable to the site‐selective cleavage of polypeptides that possess various functional groups. Peptides comprising D ‐amino acids or sensitive disulfide pairs are competent substrates. The system is extendable to the site‐selective cleavage of a native protein, ubiquitin, which comprises more than 70 amino acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号