首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ruthenium(II) Complexes containing pyrimidine‐2‐thiolate (pymS) and bis(diphenylphosphanyl)alkanes [Ph2P–(CH2)m–PPh2, m = 1, dppm; m = 2, dppe; m = 3, dppp; m = 4, dppb] are described. Reactions of [RuCl2L2] (L = dppm, dppp) and [Ru2Cl4L3] (L = dppb) with pyrimidine‐2‐thione (pymSH) in 1:2 molar ratio in dry benzene in the presence of Et3N base yielded the [Ru(pymS)2L] complexes (pymS = pyrimidine‐2‐thiolate; L = dppm ( 1 ); dppp ( 3 ); dppb ( 4 )). The complex [Ru(pymS)2(dppe)] ( 2 ) was indirectly prepared by the reaction of [Ru(pymS)2(PPh3)2] with dppe. These complexes were characterized using analytical data, IR, 1H, 13C, 31P NMR spectroscopy, and X‐ray crystallography (complex 3 ). The crystal structure of the analogous complex [Ru(pyS)2(dppm)] ( 5 ) with the ligand pyridine‐2‐thiolate (pyS) was also described. X‐ray crystallographic investigation of complex 3 has shown two four‐membered chelate rings (N, S donors) and one six‐membered ring (P, P donors) around the metal atom. Compound 5 provides the first example in which RuII has three four‐membered chelate rings: two made up by N, S donor ligands and one made up by P, P donor ligand. The arrangement around the metal atoms in each complex is distorted octahedral with cis:cis:trans:P, P:N, N:S, S dispositions of the donor atoms. The 31P NMR spectroscopic data revealed that the complexes are static in solution, except 2 , which showed the presence of more than one species.  相似文献   

2.
A series of palladium(II) thiosaccharinates with triphenylphosphane (PPh3), bis(diphenylphosphanyl)methane (dppm), and bis(diphenylphosphanyl)ethane (dppe) have been prepared and characterized. From mixtures of thiosaccharin, Htsac, and palladium(II) acetylacetonate, Pd(acac)2, the palladium(II) thiosaccharinate, Pd(tsac)2 (tsac: thiosaccharinate anion) ( 1 ) was prepared. The reaction of 1 with PPh3, dppm, and dppe leads to the mononuclear species Pd(tsac)2(PPh3)2 · MeCN ( 2 ), [Pd(tsac)2(dppm)] ( 3 ), Pd(tsac)2(dppm)2 ( 4 ), and [Pd(tsac)2(dppe)] · MeCN ( 5 ). Compounds 2 , 4 , and 5 have been prepared also by the reaction of Pd(acac)2 with the corresponding phosphane and Htsac. All the new complexes have been characterized by chemical analysis, UV/Vis, IR, and Raman spectroscopy. Some of them have been also characterized by NMR spectroscopy. The crystalline structures of complexes 3 , and 5 have been studied by X‐ray diffraction techniques. Complex 3 crystallizes in the monoclinic space group P21/n with a = 16.3537(2), b = 13.3981(3), c = 35.2277(7) Å, β = 91.284(1)°, and Z = 8 molecules per unit cell, and complex 5 in P21/n with a = 10.6445(8), b = 26.412(3), c = 15.781(2) Å, β = 107.996(7)°, and Z = 4. In compounds 3 and 5 , the palladium ions are in a distorted square planar environment. They are closely related, having two sulfur atoms of two thiosaccharinate anions, and two phosphorus atoms of one molecule of dppm or dppe, respectively, bonded to the PdII atom. The molecular structure of complex 3 is the first reported for a mononuclear PdII‐dppm‐thionate system.  相似文献   

3.
The tripodal tetraamine ligand N{(CH2)3NH2}{(CH2)2NH2}2 (pee), has been investigated as an asymmetrical tetraamine chelating agent for CoII, NiII, CuII, ZnII and CdII. The protonation constants for this ligand and the formation constants for its complexes have been determined potentiometrically in 0.1 M KCl at 25 °C. The successive protonation constants (log K n ) are: 10.22, 9.51, 8.78 and 1.60 (n = 1–4). One complex with formula M(pee)2+ (M = Co, Ni, Cu, Zn and Cd) is common to all five metal ions and the formation constant (log ML) is: 12.15, 14.17, 16.55, 13.35 or 9.74, respectively. In addition to the simple complexes, CoII, CuII and ZnII also give hydroxo complexes, and CuII and NiII give complexes with monoprotonated pee. [Zn(pee)](ClO4)2 and [Cd(pee)Cl](ClO4) complexes were isolated and are believed to have tetrahedral and trigonal-bipyramidal structures, respectively.  相似文献   

4.
Summary 2-Aminoacetophenone-2-thenoylhydrazone, Haath, C4H3SC(O)NHN=C(Me)C6H4NH2-o, forms complexes with metal(II) salts of empirical compositions [VO(Haath)2SO4], [M(Haath)2Cl2] [M=CoII, NiII, CuII or ZnII] and [M(aath)2] [M=VIVO, CoII, NiII, CuII or ZnII] which have been characterized by elemental analyses, molar conductance, magnetic susceptibility, electronic, e.s.r., i.r. and n.m.r. (1H and13C) spectral studies. X-ray and electron diffraction patterns have been obtained in order to elucidate the structure of the CuII complexes. Photoacoustic spectra of powder NiII complexes have been recorded and interpreted in the light of u.v./vis. spectra.  相似文献   

5.
Summary New metal complexes [M(NNNS)X] (M = NiII, CuII, ZnII and CdII; NNNS = anion of the quadridentate ligands formed from S-methyl--N-(2-aminophenyl)-methylenedithiocarbazate and pyridine-2-aldehyde or 6-methylpyridine-2-aldehyde; X = Cl, NCS, NO3 or I) and [Co(NNNS)Cl2]·2H2O have been prepared and characterized by elemental analysis and conductance measurements. Magnetic and spectroscopic evidence support a five-coordinate structure for [M(NNNS)X] (M = NiII, CuII, ZnII and CdII; X = Cl, NCS) and a squareplanar structure for [Ni(NNNS)]X (X = NO3 or I). The [Co(NNNS)Cl3]·2H2O complex is low-spin and octahedral. The Schiff bases and some of their metal complexes were tested against three pathogenic fungi, Alternaria alternata, Curvularia geniculata and Fusarium palidoroseum. The metal complexes are less fungitoxic than the free ligands.  相似文献   

6.
Summary A variety of metal(II) complexes of 2-carbethoxypyridine (L) have been prepared and characterised. With metal(II) chlorides the bis complexes can be formulated [ML2Cl2]o (M=CuII, NiII, CoII, FeII or MnII). The complexes are six-coordinate with 2-carbethoxypyridine acting as a bidentate ligandvia the pyridine nitrogen and the carbonyl group of the ester. The chloro complexes are nonelectrolytes in nitroethane; magnetic susceptibility measurements, i.r. and d-d electronic spectra are reported. With metal(II) perchlorate salts the complexes can be formulated as six-coordinate [ML2 (OH2)2] [ClO4]2 species containing ionic perchlorate. The ester exchanges of some of these complexes with a variety of primary alcohols have been investigated.  相似文献   

7.
Summary The preparation of oxamic acid complexes of general formula M(H2NCOCOO)2·xH2O (M = MnII, CoII, NiII, CuII or ZnII; x = 1 for CuII, x = 2 for the other metals) is reported. The i.r. and Raman spectra are discussed considering a trans-octahedral structure, formed by five-membered chelate rings with the amide oxygen and one carboxylic oxygen as donor atoms. The apical positions are occupied by water molecules. The thermal degradation process is very similar for the different complexes, first losing H2O in one or different steps, then the fragments of the organic ligand to give the metal oxide as residue. The thermal degradation of the CuII and ZnII compounds results in the formation of a new polymeric compound by deprotonation of the primary amide function in an endothermic process, the polymer further decomposes to form the metal oxide.  相似文献   

8.
The synthesis and characterization of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone (CDOSC) complexes are reported. The ligand CDOSC yields: [ML2 Cl2] and [ML2 Cl2] Cl type complexes, where M = CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and HgII, L = CDOSC. Structures of the complexes were determined using elemental analysis, molar conductivity, magnetic measurements, i.r. and electronic, as well as n.m.r spectra. CDOSC acts as a bidentate ligand in all the complexes. All the newly synthesized metal complexes, as well as the ligand, were screened for their antibacterial activity. All the complexes exhibit strong inhibitory action against Gram (+) bacteria Staphylococcus aureus and Gram (−) bacteria Escherichia coli. The antibacterial activities of the complexes are stronger than those of the ligand CDOSC itself.  相似文献   

9.
The reaction of 3-formylsalicylic acid with 1,2-bis(o-aminophenylthio)ethane yielded a Schiff base with eight donor centres N2S2O4 of which the inner compartment is of an N2S2O2 type and the outer is of the O2O2 type. The base forms several mononuclear homo- and hetero-dinuclear complexes: e.g. mononuclear CuII, NiII and dinuclear CuII, NiII, UO2 VI complexes. Hetero-dinuclear complexes {[M]M}, where M = the inner metal ion CuII, NiII and M = the outer metal ion PdII, UO2 VI are also reported. The complexes were characterised by elemental analyses, spectral, thermal and magnetic measurements. Dicopper and dinickel complexes exhibit subnormal magnetic moments showing spin pairing between two metal centres, via the phenolato oxygen, whereas other mono-copper and mono-nickel complexes (both mononuclear and hetero-dinuclear) show the expected magnetic behaviour for 1e and 2e, respectively. The e.s.r. spectra of copper complexes also support the above behaviour.  相似文献   

10.
Four different types of new ligands Ar[COC(NOH)R] n (Ar=biphenyl, n = 1 H2L1; Ar=biphenyl, n = 2 H4L2; Ar=diphenylmethane, n = 1 H2L3; Ar=diphenylmethane, n = 2 H4L4; R=2-amino-4-chlorophenol in all ligands) have been obtained from 1 equivalent of chloroketooximes Ar[COC(NOH)Cl] n (HL1-H2L4) and 1 equivalent of 2-amino-4-chlorophenol (for H2L1 and H2L3) or 2 equivalent of 2-amino-4-chlorophenol (for H4L2 and H4L4). (Mononuclear or binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized with these ligands.) These compounds have been characterized by elemental analyses, AAS, infra-red spectra and magnetic susceptibility measurements. The ligands have been further characterized by 1H NMR. The results suggest that the dinuclear complexes of H2L1 and H2L3 have a metal:ligand ratio of 1:2; the mononuclear complexes of H4L2 and H4L4 have a metal:ligand ratio of 1:1 and dinuclear complexes H4L2 and H4L4 have a metal:ligand ratio of 2:1. The binding properties of the ligands towards selected transition metal ions (MnII, CoII, NiII, CuII, ZnII, PbII, CdII, HgII) have been established by extraction experiments. The ligands show strong binding ability towards mercury(II) ion. In addition, the thermal decomposition of some complexes is studied in nitrogen atmosphere.  相似文献   

11.
Summary The single-step electrochemical synthesis of neutral transition metal complexes of imidazole, pyrazole and their derivatives has been achieved at ambient temperature. The metal was oxidized in an Me2CO solution of the diazole to yield complexes of the general formula: [M(Iz)2] (where M = Co, Ni, Cu, Zn; Iz = imidazolate); [M(MeIz)2] (where M = Co, Ni, Cu, Zn; MeIz = 4-methylimidazolate); [M(PriIz)2] (where M = Co, Ni, Cu, Zn; PriIz = 2-isopropylimidazolate); [M(pyIz)n] (where M = CoIII, CuII, ZnII; pyIz = 2-(2-pyridyl)imidazolate); [M(Pz)n] (where M = CoIII, NiII, CuII, ZnII; Pz = pyrazolate); [M(ClPz)n] and [M(IPz)n] (where M = CoIII, NiII, CuII, ZnII; ClPz = 4-chloropyrazolate; IPz = 4-iodopyrazolate); [M(Me2Pz)n] (where M = CoII, CuI, ZnII; Me2Pz = 3,5-dimethylpyrazolate) and [M(BrMe2Pz)n] (where M = CoII, NiII, CuI, ZnII; BrMe2Pz = 3,5-dimethyl-4-bromopyrazolate). Vibrational spectra verified the presence of the anionic diazole and electronic spectra confirmed the stereochemistry about the metal centre. Variable temperature (360-90 K) magnetic measurements of the cobalt and copper chelates revealed strong antiferromagnetic interaction between the metal ions in the lattice. Data for the copper complexes were fitted to a Heisenberg (S= ) model for an infinite one-dimensional linear chain, yielding best fit values of J=–62––65cm–1 andg = 2.02–2.18. Data for the cobalt complexes were fitted to an Ising (S= ) model with J=–4.62––11.7cm–1 andg = 2.06–2.49.  相似文献   

12.
Transition metal (NiII, CoII, and CuII) complexes with 1,2-bis[2-(3-pyridylmethylideneamino)phenylthio]ethane (1) and 1,2-bis[2-(4-pyridylmethylideneamino)phenylthio]ethane (2) were synthesized for the first time by slow diffusion of solutions of compounds 1 or 2 in CH2Cl2 into solutions of MX2 · nH2O (M = Ni, Co, or Cu; X = Cl or NO3; n = 2 or 6) in ethanol. The reactions with CoII and CuII chlorides afford complexes of composition M(L)Cl2 (L = 1 or 2). The reactions of compound 1 with NiII salts produce complexes with 1,2-bis(2-aminophenylthio)ethane. The molecular structure of dinitrato[1,2-bis(2-aminophenylthio)ethane]nickel(ii) was confirmed by X-ray diffraction. The ligands and the complexes were investigated by cyclic voltammetry and rotating disk electrode voltammetry. The initial reduction of the complexes proceeds at the metal atom. The oxidation of the chlorine-containing complexes proceeds at the coordinated chloride anion. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 350–355, February, 2008.  相似文献   

13.
Metal complexes of the flavonoid quercetin: antibacterial properties   总被引:8,自引:0,他引:8  
Two types of complexes were obtained when quercetin (L) was reacted with metal ions in EtOH. The compounds [M(L)Cl2(H2O)2] (M = MnII or CoII) and the semi-oxidized complexes [M(L)2CL2] · 2H2O (M = CdII or HgII) were characterized by elemental analysis., conductivity and magnetic susceptibility measurements, i.r., u.v.–vis. and e.p.r. spectroscopy. The (C=O) stretching mode located on the C ring of the ligand and the complexes remains in the same range, showing that this oxygen atom does not participate in coordination to the metal ions. Magnetic susceptibilities and e.p.r. spectra of powdered samples indicated that the monomeric form of the complexes in the solid state, and the paramagnetic nature of the CdII and HgII complexes is attributable to the semiquinone character of the ligand. The antibacterial activity of the metal complexes were tested against five bacterial strains and compared with penicillin activity.  相似文献   

14.
Reactions of SnCl2 with the complexes cis‐[PtCl2(P2)] (P2=dppf (1,1′‐bis(diphenylphosphino)ferrocene), dppp (1,3‐bis(diphenylphosphino)propane=1,1′‐(propane‐1,3‐diyl)bis[1,1‐diphenylphosphine]), dppb (1,4‐bis(diphenylphosphino)butane=1,1′‐(butane‐1,4‐diyl)bis[1,1‐diphenylphosphine]), and dpppe (1,5‐bis(diphenylphosphino)pentane=1,1′‐(pentane‐1,5‐diyl)bis[1,1‐diphenylphosphine])) resulted in the insertion of SnCl2 into the Pt? Cl bond to afford the cis‐[PtCl(SnCl3)(P2)] complexes. However, the reaction of the complexes cis‐[PtCl2(P2)] (P2=dppf, dppm (bis(diphenylphosphino)methane=1,1′‐methylenebis[1,1‐diphenylphosphine]), dppe (1,2‐bis(diphenylphosphino)ethane=1,1′‐(ethane‐1,2‐diyl)bis[1,1‐diphenylphosphine]), dppp, dppb, and dpppe; P=Ph3P and (MeO)3P) with SnX2 (X=Br or I) resulted in the halogen exchange to yield the complexes [PtX2(P2)]. In contrast, treatment of cis‐[PtBr2(dppm)] with SnBr2 resulted in the insertion of SnBr2 into the Pt? Br bond to form cis‐[Pt(SnBr3)2(dppm)], and this product was in equilibrium with the starting complex cis‐[PtBr2(dppm)]. Moreover, the reaction of cis‐[PtCl2(dppb)] with a mixture SnCl2/SnI2 in a 2 : 1 mol ratio resulted in the formation of cis‐[PtI2(dppb)] as a consequence of the selective halogen‐exchange reaction. 31P‐NMR Data for all complexes are reported, and a correlation between the chemical shifts and the coupling constants was established for mono‐ and bis(trichlorostannyl)platinum complexes. The effect of the alkane chain length of the ligand and SnII halide is described.  相似文献   

15.
Trinuclear silver(I) thiolate and silver(I) thiocarboxylate complexes [Ag3(μ‐dppm)3n‐SR)2](ClO4) [n = 2, R = C6H4Cl‐4 ( 1 ) and C{O}Ph ( 2 ); n = 3, R = tBu ( 3 )], pentanuclear silver(I) thiolate complex [Ag5(μ‐dppm)43‐SC6H4NO2‐4)4](PF6) ( 4 ), and hexanuclear silver(I) thiolate complexes [Ag6(μ‐dppm)43‐SR)4]Y2 [Y = ClO4, R =C6H4CH3‐4 ( 5 ) and C10H7 (2‐naphthyl) ( 7 ); Y = PF6, R = C6H4OCH3‐4( 6 )], were synthesized [dppm = bis(diphenylphosphanyl)methane] and their crystal structures as well as photophysical properties were studied. In the solid state at 77 K, trinuclear silver(I) thiolate and silver(I) thiocarboxylate complexes 1 and 2 exhibit luminescence at 470–523 nm, tentatively attributed to originate from the 3IL (intraligand) of thiolate or thiocarboxylate ligands, whereas hexanuclaer silver(I) thiolate complexes 5 and 7 produce dual emission, in which high‐energy emission is tentatively attributed to come from the 3IL of thiolate ligands and low‐energy emission is tentatively assigned to come from the admixture of metal ··· metal bond‐to‐ligand charge‐transfer (MMLCT) and metal‐centered (MC) excited states.  相似文献   

16.
Summary The interaction between HgII complexes of the thiols pencillamine and glutathione and some transition metal ions has been investigated potentiometrically. Mixedmetal complexes of the forms Hg(ps)2M and Hg(gs)2M (where M=Co or Ni), were detected. The complexes formed between glutathione disulphide with bivalent metal ions ZnII, NiII, CoII and CdII have also been studied. ZnII and NiII form the complexes M(gssg)H and M(gssg), while CoII and CdII form only the fully deprotonated complex M(gssg). The formation constants of the complexes were determined at 25°C and I=0.1 M (NaNO3). The concentration distribution of various complex species as a function of pH was evaluated.  相似文献   

17.
N-Carboethoxy-4-chlorobenzene thioamide (Hcct or HL) and N-carboethoxy-4-bromobenzene thioamide (Hcbt or HL) react with bivalent (Ni, Co, Cu, Ru, Pd and Pt), trivalent (Ru and Rh) and tetravalent (Pt) transition metal ions to give [MII(L)2], [RuIII(L)3], [RhIII(L)(HL)Cl2] and [Pt(L)2Cl2] complexes, respectively. In the presence of pyridine, CoII and NiII salts react with the ligands (HL) to give [MII(L)2Py] (M = Co and Ni) complexes. Soft metal ions abstract sulphur from the ligands to yield the corresponding sulphide, together with oxygenated forms of the ligands. All the metal complexes have been characterised by chemical analyses, conductivity, spectroscopic and magnetic measurements.  相似文献   

18.
CoII, NiII, CuII, ZnII and CdII complexes of N,N-bis(2-{[(2-methyl-2-phenyl-1,3-dioxolan-4-yl)methyl]amino}butyl)N′,N′-dihydroxyethanediimidamide (LH2) were synthesized and characterized by elemental analyses, IR, 1H- and 13C-NMR spectra, electronic spectra, magnetic susceptibility measurements, conductivity measurements and thermogravimetric analyses (TGA). The CoII, NiII and CuII complexes of LH2 were synthesized with 1?:?2 metal ligand stoichiometry. ZnII and CdII complexes with LH2 have a metal ligand ratio of 1?:?1. The reaction of LH2 with CoII, NiII, CuII, ZnII and CdII chloride give complexes Ni(LH)2, Cu(LH)2, Zn(LH2)(Cl)2, Cd(LH2)(Cl)2, respectively.  相似文献   

19.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

20.
Summary Complexes of the type M(AcLeu)2 · B2 (M = CoII, NiII or ZnII; B = H2O, py, 3-pic, 4-pic; AcLeu =N-acetyl-DL-leucinate ion) and M(AcLeu)2 B (M = CoII or ZnII and B = o-phen) were prepared and investigated by means of magnetic and spectroscopic measurements. The i.r. spectra of all the complexes are consistent with bidentate coordination of the amino acid to the metal ion. The room temperature solid state electronic spectra indicate that the symmetry of this species is closer toD 4h and that MO6 and MO4N2 chromophores are present in the M(AcLeu)2 · 2 H2O and M(AcLeu)2Bn · x H2O (B = py, 3-pic, 4-pic, n=2 and x=0 for M = NiII; B = o-phen, n=1 and x=0 for M = CoII; B = py, 3-pic, 4-pic, n=1 and x=1 for M = CoII) complexes, respectively. By comparing the Dq values of the amino acid and those of other N-substituted amino acids previously studied, a spectrochemical series of the the cobalt(II) and nickel(II) complexes is proposed. The1 H n.m.r. spectra of the zinc(II) complexes confirm the proposed stereochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号