首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Within the collection of surface-supported reactions currently accessible for the production of extended molecular nanostructures under ultra-high vacuum, Ullmann coupling has been the most successful in the controlled formation of covalent single C−C bonds. Particularly advanced control of this synthetic tool has been obtained by means of hierarchical reactivity, commonly achieved by the use of different halogen atoms that consequently display distinct activation temperatures. Here we report on the site-selective reactivity of certain carbon-halogen bonds. We use precursor molecules halogenated with bromine atoms at two non-equivalent carbon atoms and found that the Ullmann coupling occurs on Au(111) with a remarkable predilection for one of the positions. Experimental evidence is provided by means of scanning tunneling microscopy and core level photoemission spectroscopy, and a rationalized understanding of the observed preference is obtained from density functional theory calculations.  相似文献   

2.
The halogen bond is a special non-covalent interaction, which can represent a powerful tool in supramolecular chemistry. Although the halogen bond offers several advantages compared to the related hydrogen bond, it is currently still underrepresented in polymer science. The structural related hydrogen bonding assumes a leading position in polymer materials containing supramolecular interactions, clearly indicating the high potential of using halogen bonding for the design of polymeric materials. The current developments regarding halogen bonding containing polymers include self-assembly, photo-responsive materials, self-healing materials and others. These aspects are highlighted in the present perspective. Furthermore, a perspective on the future of this rising young research field is provided.

The incorporation of halogen bonding into polymer architectures is a new approach for the design of functional materials. This perspective emphasizes the current development in the field of halogen bonding featuring polymer materials.  相似文献   

3.
On-surface metal-organic coordination provides a promising way for synthesizing different two-dimensional lattice structures that have been predicted to possess exotic electronic properties. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we studied the supramolecular self-assembly of 9,10-dicyanoanthracene (DCA) molecules on the Au(111) surface. Close-packed islands of DCA molecules and Au-DCA metal-organic coordination structures coexist on the Au(111) surface. Ordered DCA3Au2 metal-organic networks have a structure combining a honeycomb lattice of Au atoms with a kagome lattice of DCA molecules. Low-temperature STS experiments demonstrate the presence of a delocalized electronic state containing contributions from both the gold atom states and the lowest unoccupied molecular orbital of the DCA molecules. These findings are important for the future search of topological phases in metal-organic networks combining honeycomb and kagome lattices with strong spin-orbit coupling in heavy metal atoms.  相似文献   

4.
The self‐assembly of cyano‐functionalized triarylamine derivatives on Cu(111), Ag(111) and Au(111) was studied by means of scanning tunnelling microscopy, low‐energy electron diffraction, X‐ray photoelectron spectroscopy and density functional theory calculations. Different bonding motifs, such as antiparallel dipolar coupling, hydrogen bonding and metal coordination, were observed. Whereas on Ag(111) only one hexagonally close‐packed pattern stabilized by hydrogen bonding is observed, on Au(111) two different partially porous phases are present at submonolayer coverage, stabilized by dipolar coupling, hydrogen bonding and metal coordination. In contrast to the self‐assembly on Ag(111) and Au(111), for which large islands are formed, on Cu(111), only small patches of hexagonally close‐packed networks stabilized by metal coordination and areas of disordered molecules are found. The significant variety in the molecular self‐assembly of the cyano‐functionalized triarylamine derivatives on these coinage metal surfaces is explained by differences in molecular mobility and the subtle interplay between intermolecular and molecule–substrate interactions.  相似文献   

5.
Demonstrated here is a supramolecular approach to fabricate highly ordered monolayered hydrogen‐ and halogen‐bonded graphyne‐like two‐dimensional (2D) materials from triethynyltriazine derivatives on Au(111) and Ag(111). The 2D networks are stabilized by N???H?C(sp) bonds and N???Br?C(sp) bonds to the triazine core. The structural properties and the binding energies of the supramolecular graphynes have been investigated by scanning tunneling microscopy in combination with density‐functional theory calculations. It is revealed that the N???Br?C(sp) bonds lead to significantly stronger bonded networks compared to the hydrogen‐bonded networks. A systematic analysis of the binding energies of triethynyltriazine and triethynylbenzene derivatives further demonstrates that the X3‐synthon, which is commonly observed for bromobenzene derivatives, is weaker than the X6‐synthon for our bromotriethynyl derivatives.  相似文献   

6.
The term halogen bonding describes the tendency of halogen atoms to interact with lone pair possessing atoms. The binding features and structural properties of halogen bonding are discussed and applied to drive the intermolecular self-assembly of hydrocarbons and perfluorocarbons in chemo-, site-, and enantioselective supramolecular synthesis. The halogen bonding is thus an effective and reliable tool in crystal engineering at the disposal of the supramolecular chemist.  相似文献   

7.
To investigate the influence of the non‐covalent interactions, such as hydrogen‐bonding, π–π packing and d10–d10 interactions in the supramolecular motifs, three cyanido‐bridged heterobimetallic discrete complexes {Mn(bipy)2(H2O)[Ag(CN)2]}[Ag(CN)2] ( 1 ), {Mn(phen)2(H2O)[Au(CN)2]}2[Au(CN)2]2 · 4H2O ( 2 ), and {Cd(bipy)2(H2O)[Au(CN)2]}[Au(CN)2] ( 3 ) (bipy = 2,2′‐bipyridine, and phen = 1,10‐phenanthroline), which are based on dicyanidometallate(I) groups with 1:2 stoichiometry of metal ions and 2,2′‐bipyridyl‐like co‐ligands were synthesized and structurally characterized. In compound 1 , hydrogen bonding and π–π interactions governed the supramolecular contacts. In compound 2 , the incorporation of aurophilic, hydrogen bonding and π–π interactions result in a 3D supramolecular network. In compound 3 , hydrogen bonding and π–π stacking interactions result in a 2D supramolecular layer. In the three complexes, hydrogen‐bonding, π–π packing and/or d10–d10 interactions can play important roles in increasing the dimensionality of supramolecular assemblies.  相似文献   

8.
The p-iodotetrafluorophenyl motif has been appended to the four alcoholic groups of pentaerythritol to give the corresponding tetraether 1, which works as an effective tecton in halogen bonding based crystal engineering. In fact, in the solution and the solid phases, the halogen bonding drives the self-assembly of this ether with primary, secondary, and tertiary amines as well as with pyridine derivatives. Co-crystals are isolated where 1 invariably works as a tetradentate halogen bonding donor. Double strand, 1D, infinite chains are formed where the nitrogen substituted motifs are pinned in positions that fulfil Schmidt's requirements for solid phase photocycloaddition reactions. Quantitative yields and complete stereoselectivity have been obtained in the cycloaddition reaction.  相似文献   

9.
The two-dimensional assemblies of truxenone, diindeno[1,2-a;1',2'-c]fluorene-5,10,15-trione, on the Au(111) surface have been studied by scanning tunnelling microscopy in ultrahigh vacuum. It is found that the truxenone monolayer on Au(111) exhibits different two-dimensional supramolecular structures. The investigation using scanning tunnelling microscopy combined with the density functional theory calculations can be a helpful approach to understand the complicated supramolecular structures of truxenone self-assembly on Au(111).  相似文献   

10.
Halogen bonding has been used to hold two hydrogen bonded aromatic amide foldamers to form supramolecular macrocycles.  相似文献   

11.
On-surface synthesis has become a thriving topic in surface science. The Ullmann coupling reaction is the most applied synthetic route today, but the nature of the organometallic intermediate is still under discussion. We investigate the bonding nature of prototypical intermediate species (phenyl, naphthyl, anthracenyl, phenanthryl, and triphenylenyl) on the Cu(111) surface with a combination of plane wave and atomic orbital basis set methods using density functional theory calculations with periodic boundary conditions. The surface bonding is shown to be of covalent nature with a polarized shared-electron bond supported by π-back donation effects using energy decomposition analysis for extended systems (pEDA). The bond angle of the intermediates is determined by balancing dispersion attraction and Pauli repulsion between adsorbate and surface. The latter can be significantly reduced by adatoms on the surface. We furthermore investigate how to choose computational parameters for pEDA of organic adsorbates on metal surfaces efficiently and show that bonding interpretation requires consistent choice of the density functional.  相似文献   

12.
In polymerization reactions, controlling the formation of open-chain versus cyclic product topologies is necessary because of the different properties of polymer chains and macrocycles. Here, we report a topology-selective Ullmann coupling on metal surfaces with control of the ring/chain competition. The precursor employed is 4,4′′-dibromo-ortho-terphenyl (DBOTP), which features a 60° bent feature and polymerizes into zigzag polyphenylene chains on both Au(111) and Ag(111) surface via Ullmann coupling. However, the cyclotrimerization of the precursor occurs only on Ag(111) but not Au(111). It is proposed that the cyclotrimerization reaction on Au(111) is blocked, because the necessary C−C coupling of two carbon radicals with different vertical heights is unfavored. Such height difference stems from the intrinsic steric repulsion between the two ortho-substituted phenyl groups. On Ag(111), the stronger adsorbate-substrate interaction reduces the extent of the tilting of the phenyl group, resulting in a smaller height difference of the carbon radicals and consequently in the increased probability for the formation of the cyclic trimer.  相似文献   

13.
The N.Br halogen bonding drives the self-assembly of 1,4-dibromotetrafluorobenzene (1 a) and its 1,3 or 1,2 analogues (1 b,c, respectively) with dipyridyl derivatives 2 a,b. The isomeric supramolecular architectures 3 a-f are obtained as cocrystals that are stable in the air at room temperature. The solid-state features of these 1D infinite chains 3 have been fully characterized by single-crystal X-ray, Raman, and IR analyses. The occurrence of N.Br halogen bonding in solution has been detected with (19)F NMR spectroscopy. The N.Br halogen bonding is highly selective and directional and the geometry of the single strands of noncovalent copolymers 3 is programmed by the geometry of halogen-bonding donor and acceptor sites on the starting modules. The composition and topology of the instructed networks can be predicted with great accuracy. Experiments of competitive cocrystal formation established the strength of the N.Br interaction relative to other halogen bondings and the ability of different modules 1 to be involved in site-selective supramolecular syntheses.  相似文献   

14.
The structural transformation of supramolecular nanostructures with constitutional diversity and adaptability by dynamic coordination chemistry would be of fundamental importance for potential applications in molecular switching devices. The role of halogen doping in the formation of elementary metal–organic motifs on surfaces has not been reported. Now, the 9‐ethylguanine molecule (G) and Ni atom, as a model system, are used for the structural transformation and stabilization of metal–organic motifs induced by iodine doping on Au(111). The iodine atoms are homogeneously located at particular hydrogen‐rich locations enclosed by G molecules by electrostatic interactions, which would be the key for such an unexpected stabilizing effect. The generality and robustness of this approach are demonstrated in different metal–organic systems (G/Fe) and also by chlorine and bromine.  相似文献   

15.
We demonstrate the effect of edge functionalization on the on-surface Ullmann coupling of nano-carbon materials. Unlike 10,10′-Dibromo-9,9′-bianthryl (DBBA), which is widely known to form anthracene polymers and armchair-edge graphene nanoribbons on Au(111), newly-developed precursor named 5-bromo-11(10-bromoanthracene-9-yl)anthra[2,3-b : 7,6-b′]dithiophene (BABAT) with isomers, which has similar structure as DBBA with one anthracene substituted with anthradithiophene, was found to make intramolecular C−C bonding instead of long anthracene polymers after annealing at 200 °C on Au(111). The mechanism was investigated using first-principle density functional theory, which revealed that on-surface polymerization is not kinetically preferred in case of BABAT. The reaction rate of intramolecular C−C bonding of BABAT is ∼206 times faster than that of DBBA. The intramolecular C−C bonding in DBBA biradicals, on the other hand, do not take place because of faster reverse reaction. By referring to electron density of BABAT biradicals, it was concluded that thiophene functionalization modifies distribution of electron density in BABAT radicals and facilitates electrophilic addition, leading to intramolecular C−C bonding after 200 °C annealing. These results indicate that the design of radical moiety is particularly important in the on-surface Ullmann-type coupling.  相似文献   

16.
Constructing chiral supramolecular assembly and exploring the underlying mechanism are of great significance in promoting the development of circularly polarized luminescence (CPL)-active materials. Herein, we report a solvation-mediated self-assembly from single-crystals to helical nanofibers based on the first protic acyclic (methoxy)(amino)carbenes (pAMACs) AuI-enantiomers driven by a synergetic aurophilic interactions and H-bonds. Their aggregation-dependent thermally activated delayed fluorescence properties with high quantum yields (ΦFL) up to 95 % were proved to be attributed to packing modes of Au⋅⋅⋅Au dimers with π-stacking or one-dimensional extended Au⋅⋅⋅Au chains. Via drop-casting method, supramolecular P- or M-helices were prepared. Detailed studies on the helices demonstrate that formations of extended helical Au⋅⋅⋅Au molecular chains amplify supramolecular chirality, leading to strong CPL with high dissymmetry factor (|glum|=0.030, ΦFL=67 %) and high CPL brightness (BCPL) of 4.87×10−3. Our findings bring new insights into the fabrication of helical structures to improve CPL performance by modifying aurophilic interactions.  相似文献   

17.
On-surface synthesis of high-quality nanoporous graphene (NPG) for application in nanotechnology and nanodevices remains challenging. Rational design of molecular precursors and proper kinetic control over the reaction process are the two key factors to tune the synthesis. Herein, we report a detailed study of the coupling reactions of a planar halogen-substituted nanographene molecular precursor, hexaiodo-peri-hexabenzocoronene (I6-HBC), on the Au(111) surface in the synthesis of NPG. The influence of three basic kinetic processes – molecular adsorption, migration, and coupling – on the synthesis was investigated. The results show that the HBC molecules deposited at low temperature predominantly desorb from the Au(111) surface during the annealing process, whereas depositing the precursor molecules onto a hot surface (700 K) can lead to the formation of NPG. However, at such a high surface temperature, simultaneous intermolecular dehydrogenative coupling between HBC monomers can hinder the ordered growth of NPG through Ullmann coupling. Moreover, the deposition rate of the precursors greatly influences the growth morphology of the NPG nanostructures.  相似文献   

18.
Here we present DFT calculations based on a periodic mixed gaussians/plane waves approach to study the energetics, structure, bonding of SAMs of simple thiols on Au(111). Several open issues such as structure, bonding and the nature of adsorbate are taken into account. We started with methyl thiols (MeSH) on Au(111) to establish the nature of the adsorbate. We have considered several structural models embracing the reconstructed surface scenario along with the MeS˙-Au(ad)-MeS˙ type motif put forward in recent years. Our calculations suggest a clear preference for the homolytic cleavage of the S-H bond leading to a stable MeS˙ on a gold surface. In agreement with the recent literature studies, the reconstructed models of the MeS˙ species are found to be energetically preferred over unreconstructed models. Besides, our calculations reveal that the model with 1:2 Au(ad)/thiols ratio, i.e. MeS˙-Au(ad)-MeS˙, is energetically preferred compared to the clean and 1:1 ratio models, in agreement with the experimental and theoretical evidences. We have also performed Molecular Orbital/Natural Bond Orbital, MO/NBO, analysis to understand the electronic structure and bonding in different structural motifs and many useful insights have been gained. Finally, the studies have then been extended to alkyl thiols of the RSR' (R, R' = Me, Et and Ph) type and here our calculations again reveal a preference for the RS˙ type species adsorption for clean as well as for reconstructed 1:2 Au(ad)/thiols ratio models.  相似文献   

19.
The on‐surface polymerization of 1,3,6,8‐tetrabromopyrene (Br4Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C?Cu?C bonds. After annealing at 473 K, the C?Cu?C bonds were converted to covalent C?C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self‐assembled two‐dimensional (2D) patterns stabilized by both Br?Br halogen and Br?H hydrogen bonds were observed upon deposition of Br4Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C?Br bonds and the formation of disordered metal‐coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4Py on the different substrates.  相似文献   

20.
The title compound, trimethoprim (TMP) formate [systematic name: 2,4‐di­amino‐5‐(3,4,5‐tri­methoxy­benzyl)­pyrimidin‐1‐ium formate], C14H19N4O3+·CHO2?, reveals a pseudo‐quadruple hydrogen‐bonding motif consisting of six N—H?O hydrogen bonds involving two unpaired TMP cations and two formate anions which are symmetrically disposed. The hydrogen‐bonding motif is strikingly comparable with that observed in other TMP salts where the amino­pyrimidine moieties of the TMP cations are centrosymmetrically paired. These conserved hydrogen‐bonding motifs may serve as robust synthons in crystal engineering and design. The characteristic pseudo‐quadruple hydrogen‐bonding motif and other intermolecular hydrogen bonds operating in the crystal form a two‐dimensional supramolecular sheet structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号