首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction between InCl and [Mo2(CO)6(η-C5H5)2] affords [InCl&{;Mo(CO)3(η-C5H5)&};], 6a which has been characterised as a THF adduct [InCl(THF)&{;Mo(CO)3(η-C5H5)&};2], 10, by X-ray crystallography. An additional complex, [InCl2&{;Mo(CO)3(η-C5H5)&};2], 11, is also formed in this reaction. Similar products are reported for reactions involving [M2(CO)6(η-C5H5)2] (M = Cr, W). The reaction between InCl and [Fe2(CO)4(η-C5H5)2] affords [InCl{Fe(CO)2(η-C5H5)}2], 17, and [InCl2{Fe(CO)2(η-C5H5)}], whilst that between InI and [Fe2(CO)4(η-C5H5)2] affords [InI{Fe(CO)2(η-C5H5)}2], 19.  相似文献   

2.
Reaction-solution calorimetric studies involving the complexes Ti[η5-C5(CH3)5]2-(CH3)2, Ti[η5-C5(CH3)5]2(CH3), Ti[η5-C5(CH3)5]2(C6H5), Ti[η5-C5(CH3)5]2Cl2, and Ti[η5-C5(CH3)5]2Cl, have enabled derivation of titaniumcarbon and titaniumchlorine stepwise bond dissociation enthalpies in these species.  相似文献   

3.
Photolysis of (η5-C5H5Fe(CO)(CNMe)2]PF6 in the presence of excess nucleophiles resulted in efficient substitution of the carbonyl ligand, generating the new isocyanide complexes (η5-C5H5Fe(CNMe)2)(L)]PF6 (L = PPh3, AsPh3, SbPh3, pyridine, acetonitrile, and ethylene). Similar reactions of (η5-C5H5Fe(CO)2)(CNMe)PF6 led to sequential replacement of both carbony groups with the exception of L  ethylene. No evidence of photochemical isocyanide substitution was found. The same carbonyl complexes failed to reach with L thermally. In the absence of light, ethylene, pyridine, and acetonitrile complexes were found to disporportionate in the manner [η5-C5H5Fe(CNMe)(L)2]PF6→ [η5C5H5Fe(CNMe)2(L)]PF6 → [η5-C5H5Fe(CNMe)3]PF6 with the first rearrangement occurring much faster than the second. The new isocyanide complexes are characterized by their infrared and NMR (1H, 13C) spectra.  相似文献   

4.
The intense purple colored bi- and trimetallic complexes {Ti}(CH2SiMe3)[CC(η6-C6H5)Cr(CO)3] (3) ({Ti}=(η5-C5H5)2Ti) and [Ti][CC(η6-C6H5)Cr(CO)3]2 (5) {[Ti]=(η5-C5H4SiMe3)2Ti}, in which next to a Ti(IV) center a Cr(0) atom is present, are accessible by the reaction of Li[CC(η6-C6H5)Cr(CO)3] (2) with {Ti}(CH2SiMe3)Cl (1) or [Ti]Cl2 (4) in a 1:1 or 2:1 molar ratio. The chemical and electrochemical properties of 3, 5, {Ti}(CH2SiMe3)(CCFc) [Fc=(η5-C5H5)Fe(η5-C5H4)] and [Ti][(CC)nMc][(CC)mM′c] [n, m=1, 2; n=m; nm; Mc=(η5-C5H5)Fe(η5-C5H4); M′c=(η5-C5H5)Ru(η5-C5H4); Mc=M′c; Mc≠M′c] will be comparatively discussed.  相似文献   

5.
Abstract

Syntheses and structures of penta- and hexaphosphorus analogues of ferrocene have been described recently1. Unlike their simple ferrocene analogues, these complexes have further ligating potential towards other transition metal centres by virtue of the availability of the ring phosphorus lone-pair electrons that are not involved in the η5-coordination. We now describe the first examples of coordination compounds of the triphospha-ferrocene [Fe(η5-C5Me5) (η5-C2 tBu2P3]. In the ruthenium complex [Fe(η5-C5Me5)(η5-C2 tBu2P3) Ru3(CO)9] 2 two adjacent phosphorus atoms of the η5-C2 tBu2P3 ring are interlinked by a ruthenium carbonyl cluster in which all three ruthenium atoms interact with the phosphorus atoms. The tetrametallic nickel complex [Fe(η5-C5Me5)(η5-C2 tBu2P3)Ni(CO)2]2 3 represents the first example of intermolecular interlinkage of two phospha-ferrocene systems by two metal centres.  相似文献   

6.
The complexes (η5-C5H5)Fe(CO)21-acenaphthenyl) (I), (η5-C5H5)Fe(CO)21-trans-β-deuterioacenaphthenyl) (II), and (η-C5D5)Fe(CO)2, (η1-acenaphthenyl) (XIII) have been prepared and their thermal decomposition studied in vacuo and in refluxing toluene. All three complexes decompose to produce mixtures of acenaphthene (VII), acenaphthylene (VIII), and [C5H5Fe(CO)2]2 (VI). Biacenaphthenyl (IX) is also obtained from the thermolysis of I in toluene. The formation of alkene VIII, and, to a lesser extent, alkane VII is suppressed by external CO. Thermolysis of I in toluene-d8 and of II in vacuo and in toluene produces deuterium-enriched VII. The acenaphthene generated from the decomposition of XIII also contains deuterium. The above observations are accomodated by a mechanistic scheme involving competing β-elimination, ironcarbon bond homolysis to produce the acenaphthenyl radical, and CpH abstraction by an undetermined pathway.  相似文献   

7.
8.
The isocyanide complexes [Fe(η-C5H5)(CO)2CNR][PF6] and Cr(CO)5CNR (R = CH3, C6H11, C6H5) are conveniently prepared at ?50°C from carbonyl metallates, isothiocyanates, and phosgene. At room temperature Na[Fe(η-C5H5)(CO)2] reacts with isothiocyanates (11) to give the isocyanide bridged complexes [Fe2(η-C5H5)2(μ-CO)(μ-CNR)(CO)2].  相似文献   

9.
Metal Complexes of Dyes. IX. Transition Metal Complexes of Curcumin and Derivatives The bidentate monoanions of curcumin[CU, (1, 7-bis(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione)], diacetylcurcumin[DACU, (1,7-bis(4-acetyl-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione)], dihydroxycurcumin[DHCU, (1,7-bis(4-hydroxiphenyl)-hepta-1,6-diene-3,5-dione)], dimethylcurcumin [DMCU, (1,7-bis(3,4-dimethoxyphenyl)-hepta-1, 6-diene-3,5-dione)] and trimethylcurcumin[TMCU, (1,7-bis(3,4-dimethoxyphenyl)-4-methylhepta-1,6-diene-3,5-dione)] form with chloro bridged complexes [(R3P)MCl2]2 (M?Pd, Pt; R?phenyl, n-butyl, ethyl, tolyl), [η5-C5Me5)MCl2]2 (M?Rh, Ir), [(η6-p-cymene)RuCl2]2, [(η3-C3H5)PdCl]2, di-μ-chlorobis[N-(diphenylmethylene)-glycinethylester-(C,N)]-dipalladium(II) and with [(η5-C5Me5)Co(CO)I2] monochelate dye complexes. The structure of [(η6-p-cymene)(Cl)Ru(DMCU)] was determined by X-ray diffraction. The dichelates (DMCU)2M with M?Cu, Ni, (CU)2Pd and the trichelate (CU)3Fe were obtained. Cationic bipyridine copper(II) complexes with CU, DHCU, and DMCU were sythesized by treating the dye ligands with copper(II) acetate, 2,2′-bipyridine and ammoniumtetrafluoroborate. In comparison to the free 1.3-diketones the dye complexes show a bathochromic shift in the UV/VIS spectra.  相似文献   

10.
Complete self-recognition of chirality is observed in the Michael addition of the enolate derived from R,S-[η5-C5H5Fe(CO)(PPh3-COCH3] to the acryloyl complex R,S-[(η5-C5H5Fe(CO)(PPh3)-COCHCH2)] to generate exclusively the single diastereoisomer of the glutaroyl complex RR,SS-[(η5-C5H5)Fe(CO)(PPh3)COCH2]2CH2.  相似文献   

11.
Heteroleptic rhodium(I) complexes with the general formulations [(η4-C8H12)Rh(L)] [η4-C8H12 = 1,5-cyclooctadiene; L = 5-(4-cyanophenyl)dipyrromethene, cydpm; 5-(4-nitrophenyl)dipyrromethene, ndpm; and 5-(4-benzyloxyphenyl)dipyrromethene, bdpm; 5-(4-pyridyl)dipyrromethene, 4-pyrdpm; 5-(3-pyridyl)dipyrromethene, 3-pyrdpm] have been synthesized. The complex [(η4-C8H12)Rh(4-pyrdpm)] have been used as a synthon in the construction of homo-bimetallic complex [(η4-C8H12)Rh(μ-4-pyrdpm)Rh(η5-C5Me5)Cl2] and hetero-bimetallic complexes [(η4-C8H12)Rh(μ-4-pyrdpm)Ir(η5-C5Me5)Cl2], [(η4-C8H12)Rh(μ-4-pyrdpm)Ru(η6-C10H14)Cl2] and [(η4-C8H12)Rh(μ-4-pyrdpm)Ru(η6-C6H6)Cl2]. Resulting complexes have been characterized by elemental analyses and spectral studies. Molecular structures of the representative mononuclear complexes [(η4-C8H12)Rh(ndpm)] and [(η4-C8H12)Rh(4-pyrdpm)] have been authenticated crystallographically.  相似文献   

12.
《Tetrahedron: Asymmetry》1998,9(23):4219-4238
A wide variety of planar chiral cyclopalladated compounds of general formulae [Pd{[(η5-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl(L)] (with L=py-d5 or PPh3), [Pd{[(η5-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}(acac)] or [Pd{[(R1–CC–R2)25-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl] (with R1=R2=Et; R1=Me, R2=Ph; R1=H, R2=Ph; R1=R2=Ph; R1=R2=CO2Me or R1=CO2Et, R2=Ph) are reported. The diastereomers {(Rp,R) and (Sp,R)} of these compounds have been isolated by either column chromatography or fractional crystallization. The free ligand (R)-(+)-[{(η5-C5H4)–CHN–CH(Me)–C10H7}Fe(η5–C5H5)] (1) and compound (+)-(Rp,R)-[Pd{[(Et–CC–Et)25-C5H3)–CHN–CH(Me)–C10H7]Fe(η5-C5H5)}Cl] (7a) have also been characterized by X-ray diffraction. Electrochemical studies based on cyclic voltammetries of all the compounds are also reported.  相似文献   

13.
The synthesis of new cyclopenta[l]phenanthrenyl complexes [(η5-C17H10Me)(η3-C3H5)Mo(CO)2] and [(η5-C17H9(COOMe)N(CH2)4)(η3-C3H5)Mo(CO)2] is described. Although these compounds are structural analogues their reactivity is different. Protonation of [(η5-C17H10Me)(η3-C3H5)Mo(CO)2] gives a stable ionic compound [(η5-C17H10Me)Mo(CO)2(NCMe)2][BF4] while its analogue containing both tertiary amino and carboxylic ester groups [(η5-C17H9(COOMe)N(CH2)4)(η3-C3H5)Mo(CO)2] decomposes under the same conditions. [(η5-C17H10Me)Mo(CO)2(NCMe)2][BF4] reacts with cyclopentadiene to give a stable η4-complex [(η4-C5H6)(η5-C17H10Me)Mo(CO)2][BF4] that was successfully oxidized to the Mo(IV) dicationic compound [(η5-C5H5)(η5-C17H10Me)Mo(CO)2][Br][BF4].  相似文献   

14.
The redox chemistry of [Cp*Fe(η5-As5)] ( 1 , Cp*=η5-C5Me5) has been investigated by cyclic voltammetry, revealing a redox behavior similar to that of its lighter congener [Cp*Fe(η5-P5)]. However, the subsequent chemical reduction of 1 by KH led to the formation of a mixture of novel Asn scaffolds with n up to 18 that are stabilized only by [Cp*Fe] fragments. These include the arsenic-poor triple-decker complex [K(dme)2][{Cp*Fe(μ,η2:2-As2)}2] ( 2 ) and the arsenic-rich complexes [K(dme)3]2[(Cp*Fe)2(μ,η4:4-As10)] ( 3 ), [K(dme)2]2[(Cp*Fe)2(μ,η2:2:2:2-As14)] ( 4 ), and [K(dme)3]2[(Cp*Fe)444:3:3:2:2:1:1-As18)] ( 5 ). Compound 4 and the polyarsenide complex 5 are the largest anionic Asn ligand complexes reported thus far. Complexes 2 – 5 were characterized by single-crystal X-ray diffraction, 1H NMR spectroscopy, EPR spectroscopy ( 2 ), and mass spectrometry. Furthermore, DFT calculations showed that the intermediate [Cp*Fe(η5-As5)], which is presumably formed first, undergoes fast dimerization to the dianion [(Cp*Fe)2(μ,η4:4-As10)]2−.  相似文献   

15.
The reaction between [(η5-C5H5)MoH(CO)3] and disulphides gives dimeric or trimeric complexes depending upon the conditions. The syntheses of the novel trinuclear molybdenum carbonyl complex [{Mo(η5-C5H5)(SR)(μ-CO)(CO)}3] (R = Me), and dinuclear compounds [Mo25-C5H5)(μ-SR)3(CO)4] (R = Me) and [Mo25-C5H5)2(SR)2(CO)2(μ-SR)(μ-Br)] (R = Me or Ph) are reported.  相似文献   

16.
The negative ion mass spectra of a series of monomeric and dimeric η5-cyclopentadienyl transition metal carbonyls have been examined. The base peak in the case of the monomeric compounds (η5-C5H5)V(CO)4, (η5-C5H5)Mn(CO)3 and (η5-CH3C5H4)Mn(CO)3 arises from a reductive decarbonylation of the parent molecule—the resulting radical anion [M–CO]? is formally isoelectronic with the molecular cations [M]? observed in the positive ion mass spectra of these compounds and subsequently undergoes successive decarbonylations to the ‘aromatic’ cyclopentadienyl anions. For the compound (η5-C5H5)Co(CO)2, however, a molecular anion was observed as the base peak which has been formulated as [(η3-C5H5)Co(CO)2]? in the light of considerations based on the rare gas rule. As expected, the dimeric molecules [(η5-C5H5)M(CO)3]2 (where M = Cr or Mo) and [(η5-C5H5)Fe(CO)2]2 (and its methyl analogue) undergo reductive cleavage of their metal-metal bonds to give the anions [(η5-C5H5)M(CO)3]? and [(η5-C5H5)Fe(CO)2]? as the base peaks in their negative ion mass spectra. The dimeric nickel compound [(η5-C5H5)Ni(CO)]2, however, reductively decarbonylates to the [M-CO]? radical anion as its predominant fragmentation in the gas phase. Very low abundances of [(η5-C5H5)Fe(CO)2] and [(η5-CH3C5H4)Fe(CO)2] were also observed.  相似文献   

17.
The reaction between Fe(CO)5, and group V donor ligands L, (L  PPh3, AsPh3, SbPh3, PMePh2, PMe2Ph, Asme2Ph, P(C6H11)3, P(n-Bu)3, P(i-Bu)3, P(OPh)3, P(OEt)3, P(OMe)3) in the presence of [(η5-C5Me5Fe(CO)2]2 (R  H, Me) or [(η5-C5Me5)Fe(CO)2]2 as catalyst in refluxing toluene, rapidly gives the complexes Fe(CO)4L in yields > 85%. The reaction rate is essentially independent of the nature of L for [(η5-C5Me5)Fe(CO)2]2 as catalyst. For the other catalysts, the rate is influenced predominantly by the steric properties of L. These results are interpreted in terms of the interaction between the catalyst and the ligand L to give derivatives of the type (η5-C5H4R)2Fe2,(CO)3,(L). These derivatives were also found to catalyse the reaction between Fe(CO)5, and L. The complexes [(η-C5H4R)Fe(CO)2]2 (R  H, Me) and [(η5-C5Me5)Fe(CO)2]2 also catalyse the reaction between Mn2(CO)10 and PPh3 to give Mn2(CO)8- PPh3)2 in > 80% yield.  相似文献   

18.
Four titanium(IV) carboxylate complexes [Ti(η5-C5H5)2(O2CCH2SMes)2] (1), [Ti(η5-C5H4Me)2(O2CCH2SMes)2] (2), [Ti(η5-C5H5)(η5-C5H4SiMe3)(O2CCH2SMes)2] (3) and [Ti(η5-C5Me5)(O2CCH2SMes)3] (4; Mes = 2,4,6-Me3C6H2) have been synthesised by the reaction of the corresponding titanium derivatives [Ti(η5-C5H5)2Cl2], [Ti(η5-C5H4Me)2Cl2], [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] and [Ti(η5-C5Me5)Cl3] and two (for 13) or three (for 4) equivalents of mesitylthioacetic acid. Complexes 14 have been characterized by spectroscopic methods and the molecular structure of the complexes 1, 2 and 4 have been determined by X-ray diffraction studies. The cytotoxic activity of 14 was tested against tumor cell lines human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, and normal immunocompetent cells, that is peripheral blood mononuclear cells PBMC and compared with those of the reference complexes [Ti(η5-C5H5)2Cl2] (R1), [Ti(η5-C5H4Me)2Cl2] (R2), [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (R3) and cisplatin. In all cases, the cytotoxic activity of the carboxylate derivatives was higher than that of their corresponding dichloride analogues, indicating a positive effect of the carboxylato ligand on the final anticancer activity. Complexes 14 are more active against K562 (IC50 values from 72.2 to 87.9 μM) than against HeLa (IC50 values from 107.2 to 142.2 μM) and Fem-x cells (IC50 values from 90.2 to 191.4 μM).  相似文献   

19.
The results of thermal decomposition studies of derivatives of iron containing multiple alkylmetal groups (CH3)2Si[η5-C5H4Fe(CO)2C5H11]2 (I), {(CH3)2Si[η5-C5H4Fe(CO)2]2(CH2)5}2 (II) and [η5-C5H5Fe(CO)2]2 (CH2)5 (III) are presented and compared with the results obtained for η5-C5H5Fe(CO)2C5H11 (IV). Compounds II and III are found to produce principally 1-pentene and therefore do not decompose principally by a β-hydrogen elimination steps. Compound I decomposes principally by a β-hydrogen elimination process but produces significantly more pentane in its reactions than does IV.  相似文献   

20.
Microcalorimetric measurements at elevated temperatures of the heats of thermal decomposition and iodination have led to values of the standard enthalpies of formation of the following crystalline compounds (values given in kJ mol?1) at 298K: [Cr(η6-1,3,5-C6H3(CH3)3)2] = (63±12); [Cr(η6-C6(CH3)6)2] : -(88±12); [Cr(1,2,3,4,4a,8a-η-C10H8)2] = (407±11); [Cr(CO)3(1,2,3,4,4a,8a-η-C10H8)] = -(258±8). Separate measurements by the vacuum sublimation microcalorimetric technique gave the following values for the enthalpy of sublimation at 298K (kJ mol?1) : [Cr(η6-1,3,5-C6H3(CH3)3)2] = (104±1); [Cr(η6-C6(CH3)6)2] = (119±4); [Cr(CO)3(1,2,3,4,4a,8a-η-C10H8)] = (107±3). From these and other data, the bond enthalpy contributions of the metal-ligand bonds in the gaseous metal complexes were evaluated as follows: [(η6-C6(CH3)6)-Cr] (155±7); [(η6-C6H3(CH3)3)-Cr] (151±6); [(1,2,3,4,4a, 8a-η-C10H8)-Cr](145±6) kJ mol?1]The question of the transferability of the enthalpy contributions of chromium—ligand bonds between organochronium complexes is discussed with aid of information from structural and spectroscopic investigation. The limitations of the procedure are defined.The thermodynamic data are used to discuss various substitution, redistribution and exchange reaction of Cr(η-arene)2 and [Cr(CO)3(η-arene)] compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号