首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A bacterial strain, Streptomyces sp. TN119, was isolated from the gut of Batocera horsfieldi larvae and showed xylanolytic activity. A degenerate primer set was designed based on the base usage of G and C in Actinobacteria xylanase-coding sequences belonging to the glycosyl hydrolases family 10 (GH 10), and used to clone the partial xylanase gene from Streptomyces sp. TN119. A modified thermal asymmetric interlaced (TAIL)-PCR specific for high-GC genes, named GC TAIL-PCR, was developed to obtain the full-length xylanase gene (xynA119; 1089 bp). Rich in GC content (67.8%), xynA119 encodes a new GH 10 xylanase (XynA119), which shares highest identity (48.8%) with an endo-1,4-β-xylanase from Cellulosimicrobium sp. HY-12. Recombinant XynA119 was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 6.5 and 60 °C, was stable at pH 4.0 to 10.0 and 50 °C, was resistant to most chemicals (except for Cu2+, Mn2+, Ag+, Hg2+ and SDS) and trypsin, and produced simple products. The specific activity, K m, V max, and k cat using oat-spelt xylan as substrate were 57.9 U mg−1, 1.0 mg ml−1, 74.8 μmol min−1 mg−1, and 49.2 s–1, respectively.  相似文献   

2.
A psychrotrophic fungus identified as Trichoderma sp. SC9 produced 36.7 U/ml of xylanase when grown on a medium containing corncob xylan at 20 °C for 6 days. The xylanase was purified 37-fold with a recovery yield of 8.2%. The purified xylanase appeared as a single protein band on SDS-PAGE with a molecular mass of approximately 20.5 kDa. The enzyme had an optimal pH of 6.0, and was stable over pH 3.5–9.0. The optimal temperature of the xylanase was 42.5 °C and it was stable up to 35 °C at pH 6.0 for 30 min. The xylanase was thermolabile with a half-life of 23.9 min at 45 °C. The apparent K m values of the xylanase for birchwood, beechwood, and oat-spelt xylans were found to be 3, 2.1, and 16 mg/ml respectively. The xylanase hydrolyzed beechwood xylan and birchwood xylan to yield mainly xylobiose as end products. The enzyme-hydrolysed xylotriose, xylotetraose, and xylopentose to produce xylobiose, but it hardly hydrolysed xylobiose. A xylanase gene (xynA) with an open reading frame of 669 nucleotide base pairs (bp), encoding 222 amino acids, from the strain was cloned and sequenced. The deduced amino acid sequence of XynA showed 85% homology with Xyn2 from a mesophilic strain of Trichoderma viride.  相似文献   

3.
A highly thermostable alkaline xylanase was purified to homogeneity from culture supernatant of Bacillus sp. JB 99 using DEAE-Sepharose and Sephadex G-100 gel filtration with 25.7-fold increase in activity and 43.5% recovery. The molecular weight of the purified xylanase was found to be 20 kDA by SDS-PAGE and zymogram analysis. The enzyme was optimally active at 70 °C, pH 8.0 and stable over pH range of 6.0–10.0.The relative activity at 9.0 and 10.0 were 90% and 85% of that of pH 8.0, respectively. The enzyme showed high thermal stability at 60 °C with 95% of its activity after 5 h. The K m and V max of enzyme for oat spelt xylan were 4.8 mg/ml and 218.6 μM min−1 mg−1, respectively. Analysis of N-terminal amino acid sequence revealed that the xylanase belongs to glycosyl hydrolase family 11 from thermoalkalophilic Bacillus sp. with basic pI. Substrate specificity showed a high activity on xylan-containing substrate and cellulase-free nature. The hydrolyzed product pattern of oat spelt xylan on thin-layer chromatography suggested xylanase as an endoxylanase. Due to these properties, xylanase from Bacillus sp. JB 99 was found to be highly compatible for paper and pulp industry.  相似文献   

4.
Two xylanases from the crude culture filtrate of Penicillium sclerotiorum were purified to homogeneity by a rapid and efficient procedure, using ion-exchange and molecular exclusion chromatography. Molecular masses estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 23.9 and 33.1 kDa for xylanase I and II, respectively. The native enzymes’ molecular masses of 23.8 and 30.8 kDa were estimated for xylanase I and II, respectively, by molecular exclusion chromatography. Both enzymes are glycoproteins with optimum temperature and pH of 50 °C and pH 2.5 for xylanase I and 55 °C and pH 4.5 for xylanase II. The reducing agents β-mercaptoethanol and dithio-treitol enhanced xylanase activities, while the ions Hg2+ and Cu2+ as well the detergent SDS were strong inhibitors of both enzymes, but xylanase II was stimulated when incubated with Mn2+. The K m value of xylanase I for birchwood xylan and for oat spelt xylan were 6.5 and 2.6 mg mL−1, respectively, whereas the K m values of xylanase II for these substrates were 26.61 and 23.45 mg mL−1. The hydrolysis of oat spelt xylan by xylanase I released xylobiose and larger xylooligosaccharides while xylooligosaccharides with a decreasing polymerization degree up to xylotriose were observed by the action of xylanase II. The present study is among the first works to examine and describe an extracellular, highly acidophilic xylanase, with an unusual optimum pH at 2.5. Previously, only one work described a xylanase with optimum pH 2.0. This novel xylanase showed interesting characteristics for biotechnological process such as feed and food industries.  相似文献   

5.
A thermostable xylanase from a newly isolated thermophilic fungus Talaromyces thermophilus was purified and characterized. The enzyme was purified to homogeneity by ammonium sulfate precipitation, diethylaminoethyl cellulose anion exchange chromatography, P-100 gel filtration, and Mono Q chromatography with a 23-fold increase in specific activity and 17.5% recovery. The molecular weight of the xylanase was estimated to be 25kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and gel filtration. The enzyme was highly active over a wide range of pH from 4.0 to 10.0. The relative activities at pH5.0, 9.0, and 10.0 were about 80%, 85.0%, and 60% of that at pH7.5, respectively. The optimum temperature of the purified enzyme was 75°C. The enzyme showed high thermal stability at 50°C (7days) and the half-life of the xylanase at 100°C was 60min. The enzyme was free from cellulase activity. K m and V max values at 50°C of the purified enzyme for birchwood xylan were 22.51mg/ml and 1.235μmol min−1 mg−1, respectively. The enzyme was activated by Ag+, Co2+, and Cu2+; on the other hand, Hg2+, Ba2+, and Mn2+ inhibited the enzyme. The present study is among the first works to examine and describe a secreted, cellulase-free, and highly thermostable xylanase from the T. thermophilus fungus whose application as a pre-bleaching aid is of apparent importance for pulp and paper industries.  相似文献   

6.
A xylanase-encoding gene, xyn11F63, was isolated from Penicillium sp. F63 CGMCC1669 using degenerated polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR techniques. The full-length chromosomal gene consists of 724 bp, including a 73-bp intron, and encodes a 217 amino acid polypeptide. The deduced amino acid sequence of xyn11F63 shows the highest identity of 70% to the xylanase from Penicillium sp. strain 40, which belongs to glycosyl hydrolases family 11. The gene was overexpressed in Pichia pastoris, and its activity in the culture medium reached 516 U ml−1. After purification to electrophoretic homogeneity, the enzyme showed maximal activity at pH 4.5 and 40°C, was stable at acidic buffers of pH 4.5–9.0, and was resistant to proteases (proteinase K, trypsin, subtilisin A, and α-chymotrypsin). The specific activity, K m, and V max for oat spelt xylan substrate was 7,988 U mg−1, 22.2 mg ml−1, and 15,105.7 μmol min−1 mg−1, respectively. These properties make XYN11F63 a potential economical candidate for use in feed and food industrial applications.  相似文献   

7.
To obtain extracellular and high-level expression of the Dictyoglomus thermophilum Rt46B.1 xylanase B gene, this gene was integrated into the α-amylase gene site of a host strain of Bacillus subtilis WB800. The extreme thermophile xylanase gene was successfully integrated and expressed in the host, measured at 24 ± 0.4 XUs/mL in the Luria broth medium supernatant. The recombinant enzyme was purified by ammonium sulfate precipitation, anion exchange chromatography, and gel filtration. The molecular mass and pI value of xylanase were estimated to be 24 kDa and 4.3, respectively. The optimal pH level and temperature of the purified enzyme were 6.5 and 85 °C, respectively. Xylanase showed reasonable activity at temperatures up to 95 °C and remained stable at 4 °C for 1 week. The purified enzyme retained most of its activity in 1 mM ethylenediaminetetraacetic acid or dithiothreitol and 0.1% Tween-20 or Triton X-100. However, strong inhibition was observed in the presence of 5 mM Mn2+, 0.5% sodium dodecyl sulfate, Tween-20, or Triton X-100; a strong stimulating effect was also observed in the presence of Fe2+. The K m and V max values of the recombinant xylanase for birchwood xylan were calculated to be 2.417 ± 0.36 mg/mL and 325 ± 41 μmol/min mg, respectively. Xylanase was found to be useful in the prebleaching process of paper pulps.  相似文献   

8.
An α-l-arabinofuranosidase gene, abf51S9, was cloned from Streptomyces sp. S9 and successfully expressed in Escherichia coli BL21 (DE3). The full-length gene consisted of 1,506 bp and encoded 501 amino acids with a calculated mass of 55.2 kDa. The deduced amino acid sequence was highly homologous with the α-l-arabinofuranosidases belonging to family 51 of the glycoside hydrolases. The recombinant protein was purified to electrophoretic homogeneity by Ni-NTA affinity chromatography and subsequently characterized. The optimal pH and temperature for the recombinant enzyme were 6.0 and 60∼65 °C, respectively. The enzyme showed a broad pH range of stability, retaining over 75% of the maximum activity at pH 5.0 to 11.0. The specific activity, K m, and V max with p-nitrophenyl-α-l-arabinofuranoside as substrate were 60.0 U mg−1, 1.45 mM, and 221 μmol min−1 mg−1, respectively. Abf51S9 showed a mild but significant synergistic effect in combination with xylanase on the degradation of oat-spelt xylan and soluble wheat arabinoxylan substrates with a 1.19- and 1.21-fold increase in the amount of reducing sugar released, respectively. These favorable properties make Abf51S9 a good candidate in various industrial applications.  相似文献   

9.
A low molecular weight endo-xylanase (EC 3.2.1.8) was purified from an edible mushroom Termitomyces clypeatus grown in submerged medium with oat spelt xylan. Xylanase was purified to apparent homogeneity by ammonium sulfate fractionation and gel filtration chromatography. Its molecular weight was determined by gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 12 kDa. The enzyme was found to be most active at 50°C and pH 5.0, being most stable at pH 6.5. The Km for oat spelt xylan was determined to be 10.4 mg/ml. The specificities of the enzyme was observed to be highly specific towards oat spelt xylan and was inhibited by mercuric chloride (HgCl2), N-bromosuccinimide, and trans-1,2-diaminocyclohexane-N′,N′,N′,N′-tetraacetic acid strongly. The inhibitory action of N-bromosuccinimide on enzyme confirmed the presence of one tryptophan residue in its substrate-binding site. Amino acid analysis for xylanase showed the presence of high amount of hydrophobic serine, glycine, threonine, and alanine residues. The N-terminal sequencing study for the previously purified and characterized 56 kDa xylanolytic amyloglucosidase reveal the presence of 33.30% identity with glucoamylase chain A from Aspergillus awamori. The N-terminal sequence analysis of the present 12 kDa enzyme showed highest similarity (72.22% identity) towards xylanase from Neurospora crassa.  相似文献   

10.
The collagenase, produced extracellular by Bacillus pumilus Col-J, was purified by ammonium sulfate precipitation followed by two gel filtrations, involving Sephadex G-100 column and Sepharose Fast Flow column. Purified collagenase has a 31.53-fold increase in specific activity of 87.33 U/mg and 7.00% recovery. The collagenase has a relative molecular weight of 58.64 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimal temperature for the enzyme reaction was 45 °C. More than 50% of the original activity still remained after 5 min of incubation at 70 °C or 10 min at 60 °C. The maximal enzyme activity of collagenase was obtained at pH 7.5, and it was stable over a pH range of 6.5–8.0. The collagenase activity was strongly inhibited by Mn2+, Pb2+, ethylenediamine tetraacetic acid, ethylene glycol tetraacetic acid, and β-mercaptoethanol. However, Ca2+ and Mg2+ greatly increased its activity. The collagenase from B. pumilus Col-J showed highly specific activity towards the native collagen from calf skin. The K m and V max of the enzyme for collagen were 0.79 mg/mL and 129.5 U, respectively.  相似文献   

11.
The gene xynB from Aspergillus sulphureus encoding the endo-β-1,4-xylanase was de novo synthesized by splicing overlap extension polymerase chain reaction according to Pichia pastoris protein’s codon bias. The synthetic DNA and wild-type DNA were placed under the control of a glyceraldehyde-3-phosphate dehydrogenase gene promoter (GAP) in the constitutive expression vector plasmid pGAPzαA and electrotransformed into the P. pastoris X-33 strain, respectively. The transformants screened by Zeocin were able to constitutively secrete the xylanase in YPD liquid medium. The maximum yield of the recombinant xylanase produced by the synthetic DNA was 105 U ml−1, which was about 5-fold higher than that by wild-type DNA under the flask culture at 28 °C for 3 days. The enzyme showed optimal activity at 50 °C and pH 5.0. The residual activity remained above 90% after the recombinant xylanase was pretreated in Na2HPO4–citric acid buffer (pH 2.4) for 2 h. The xylanase activity was significantly improved by Zn2+. These biochemical characteristics suggest that the recombinant xylanase has a prospective application in feed industry as an additive.  相似文献   

12.
A phosphite dehydrogenase gene (ptdhK) consisting of 1,011-bp nucleotides which encoding a peptide of 336 amino acid residues was cloned from Pseudomonas sp. K. gene ptdhK was expressed in Escherichia coli BL21 (DE3) and the corresponding recombinant enzyme was purified by metal affinity chromatography. The recombinant protein is a homodimer with a monomeric molecular mass of 37.2 kDa. The specific activity of PTDH-K was 3.49 U mg−1 at 25 °C. The recombinant PTDH-K exhibited maximum activity at pH 3.0 and at 40 °C and displayed high stability within a wide range of pHs (5.0 to 10.5). PTDH-K had a high affinity to its natural substrates, with K m values for sodium phosphite and NAD of 0.475 ± 0.073 and 0.022 ± 0.007 mM, respectively. The activity of PTDH-K was enhanced by Na+, NH4+, Mg2+, Fe2+, Fe3+, Co2+, and EDTA, and PTDH-K exhibited different tolerance to various organic solvents.  相似文献   

13.
Purification and characterization of halotolerant, thermostable alkaline l-glutaminase from a Bacillus sp. LKG-01 (MTCC 10401), isolated from Gangotri region of Uttarakhand Himalaya, is being reported in this paper. Enzyme has been purified 49-fold from cell-free extract with 25% recovery (specific activity 584.2 U/mg protein) by (NH4)2SO4 precipitation followed by anion exchange chromatography and gel filtration. Enzyme has a molecular weight of 66 kDa. l-Glutaminase is most active at pH 11.0 and stable in the pH range 8.0–11.0. Temperature optimum is 70 °C and is completely stable after 3 h pre-incubation at 50 °C. Enzyme reflects more enhanced activity with 1–20% (w/v) NaCl, which is further reduced to 80% when NaCl concentration was increased up to 25%. l-Glutaminase is almost active with K+, Zn2+, and Ni2+ ions and K m and V max values of 240 μM and 277.77 ± 1.1 U/mg proteins, respectively. Higher specific activity, purification fold, better halo-tolerance, and thermostability would make this enzyme more attractive for food fermentation with respect to other soil microbe derived l-glutaminase reported so far.  相似文献   

14.
The aim of this work was to have cellulase activity and hemicellulase activity screenings of endophyte Acremonium species (Acremonium zeae EA0802 and Acremonium sp. EA0810). Both fungi were cultivated in submerged culture (SC) containing l-arabinose, d-xylose, oat spelt xylan, sugarcane bagasse, or corn straw as carbon source. In solid-state fermentation, it was tested as carbon source sugarcane bagasse or corn straw. The highest FPase, endoglucanase, and xylanase activities were produced by Acremonium sp. EA0810 cultivated in SC containing sugarcane bagasse as a carbon source. The highest β-glucosidase activity was produced by Acremonium sp. EA0810 cultivated in SC using d-xylose as carbon source. A. zeae EA0802 has highest α-arabinofuranosidase and α-galactosidase activities in SC using xylan as a carbon source. FPase, endoglucanase, β-glucosidase, and xylanase from Acremonium sp. EA0810 has optimum pH and temperatures of 6.0, 55 °C; 5.0, 70 °C; 4.5, 60 °C; and 6.5, 50 °C, respectively. α-Arabinofuranosidase and α-galactosidase from A. zeae EA0802 has optimum pH and temperatures of 5.0, 60 °C and 4.5, 45 °C, respectively. It was analyzed the application of Acremonium sp. EA0810 to hydrolyze sugarcane bagasse, and it was achieved 63% of conversion into reducing sugar and 42% of conversion into glucose.  相似文献   

15.
Xylanase from Bacillus pumilus strain MK001 was immobilized on different matrices following varied immobilization methods. Entrapment using gelatin (GE) (40.0%), physical adsorption on chitin (CH) (35.0%), ionic binding with Q-sepharose (Q-S) (45.0%), and covalent binding with HP-20 beads (42.0%) showed the maximum xylanase immobilization efficiency. The optimum pH of immobilized xylanase shifted up to 1.0 unit (pH 7.0) as compared to free enzyme (pH 6.0). The immobilized xylanase exhibited higher pH stability (up to 28.0%) in the alkaline pH range (7.0–10.0) as compared to free enzyme. Optimum temperature of immobilized xylanase was observed to be 8 °C higher (68.0 °C) than free enzyme (60.0 °C). The free xylanase retained 50.0% activity, whereas xylanase immobilized on HP-20, Q-S, CH, and GE retained 68.0, 64.0, 58.0, and 57.0% residual activity, respectively, after 3 h of incubation at 80.0 °C. The immobilized xylanase registered marginal increase and decrease in K m and V max values, respectively, as compared to free enzyme. The immobilized xylanase retained up to 70.0% of its initial hydrolysis activity after seven enzyme reaction cycles. The immobilized xylanase was found to produce higher levels of high-quality xylo-oligosaccharides from birchwood xylan, indicating its potential in the nutraceutical industry.  相似文献   

16.
Alternaria sp. ND-16, a bacterium isolated from soil sample, was identified as a strain of Alternaria mali based on the morphology and comparison of internal transcribed spacer rDNA gene sequence studies. Furthermore, it is demonstrated that this strain has xylanase activity, and the activity can be optimized under suitable growing conditions where wheat bran and urea are the primary sources of carbon and nitrogen. Partially purified xylanase from Alternaria sp. ND-16 is shown to have an optimal pH of 6.0 and optimal temperature of 50 °C, making this enzyme potentially suitable for industrial applications. It is also demonstrated that Na+ and Mn2+ show strong inhibition of the xylanase while K+, Li+, Fe2+, Cu2+, and Zn2+ have no significant effect on the activity.  相似文献   

17.
To obtain a high level expression of phytase with favorable characteristics, a codon-optimized phytase gene from Citrobacter freundii was synthesized and transferred into Pichia pastoris. Small-scale expression experiments and activity assays were used to screen positive colonies. After purified by Ni2+–NTA agarose affinity column, the characterizations of the recombinant phytase were determined. The recombinant phytase (r-phyC) had two distinct pH optima at 2.5 and 4.5 and an optimal temperature at 50 °C. It retained more than 80% activity after being incubated under various buffer (pH 1.5–8.0) at 37 °C for 1 h. The specific activity, Km, and Vmax values of r-phyC for sodium phytate were 2,072 ± 18 U mg−1, 0.52 ± 0.04 mM, and 2,380 ± 84 U mg−1 min−1, respectively. The enzyme activity was significantly improved by 1 mM of K+, Ca2+, and Mg2+. These characteristics contribute to its potential application in feed industry.  相似文献   

18.
Dialdehyde starch (DAS) was used as a novel coupling agent to prepare chitosan carrier to immobilize the xylanase from Aspergillus niger A-25. Compared with glutaraldehyde-cross-linked chitosan (CS-GA) and pure chitosan beads, the DAS-cross-linked chitosan (CS-DAS) beads exhibited the highest xylanase activity recovery. The DAS adding amount and cross-linking time in CS-DAS preparation process were optimized with respect to activity recovery to the values of 1.0 g (6.7% w/v concentration) and 16 h, respectively. The optimum temperature of both the CS-DAS- and CS-GA-immobilized xylanase was observed to be 5 °C higher than that of free enzyme (50 °C). The CS-DAS-immobilized xylanase had the highest thermal and storage stability as compared to the CS-GA-immobilized and free xylanase. The apparent K m and V max values of the CS-DAS-immobilized xylanase were estimated to be 1.29 mg/ml and 300.7 μmol/min/mg protein, respectively. The CS-DAS-immobilized xylanase could produce from birchwood xylan high-quality xylo-oligosaccharides, mainly composed of xylotriose, as free xylanase did. The proposed CS-DAS carrier was more advantageous over the CS-GA or pure chitosan carrier for xylanase immobilization application.  相似文献   

19.
Polyphenol oxidases (PPOs) were isolated from cell suspensions of two cultivars of cotton (Gossypium hirsutum L.), and their biochemical characteristics were studied. PPO from Coker 312, an embryogenic cultivar, showed a highest affinity to catechol 20 mM, and PPO from R405-2000, a nonembryogenic cultivar, showed a highest affinity to 4-methylcatechol 20 mM. The optimal pH for PPO activity was 7.0 and 6.0 for Coker 312 and R405-2000, respectively. The enzyme had an optimal temperature of 25 °C and was relatively stable at 20–30 °C. Reducing sodium metabisulfite, ascorbic acid, dithiothreitol, SnCl2, and FeCl3 markedly inhibited PPO activity, whereas its activity was highly enhanced by Mg2+, Ca2+, and Mn2+ and was moderately inhibited by Ba2+, Cu2+, and Zn2+. The analysis revealed a single band on the sodium dodecyl sulfate polyacrylamide gel electrophoresis which corresponded to a molecular weight of 55 kDa for Coker 312 and 42 kDa for R405-2000.  相似文献   

20.
Organic solvent- and detergent-resistant proteases are important from an industrial viewpoint. However, they have been less frequently reported and only few of them are from actinomycetes. A metalloprotease from Streptomyces olivochromogenes (SOMP) was purified by ion exchange with Poros HQ and gel filtration with Sepharose CL-6B. Apparent molecular mass of the enzyme was estimated to be 51 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and gelatin zymography. The activity was optimum at pH 7.5 and 50 °C and stable between pH 7.0 and 10.0. SOMP was stable below 45 °C and Ca2+ increased its thermostability. Ca2+ enhanced while Co2+, Cu2+, Zn2+, Mn2+, and Fe2+ inhibited the activity. Ethylenediaminetetraacetic acid and ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid, but not phenylmethylsulfonyl fluoride, aprotinin, and pefabloc SC, significantly suppressed the activity, suggesting that it might be a metalloprotease. Importantly, it is highly resistant against various detergents, organic solvents, and oxidizing agents, and the activity is enhanced by H2O2. The enzyme could be a novel protease based on its origin and peculiar biochemical properties. It may be useful in biotechnological applications especially for organic solvent-based enzymatic synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号