首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A novel poly(methylene blue)/graphene composite glassy carbon electrode was fabricated and the electrochemical behavior of maltol at the modified electrode was studied by cyclic voltammetry. In phosphate-buffered solution, the modified electrode exhibited excellent electrocatalytic activity towards the electrochemical oxidation of maltol. Under optimized conditions, the oxidation peak current showed a linear relationship with the concentrations of maltol in the ranges of 8.00?×?10?7 to 4.00?×?10?5 and 4.00?×?10?5 to 5.40?×?10?4 mol L?1, with a detection limit of 6.50?×?10?8 mol L?1. The performance of the developed method was validated in terms of linearity (r?=?0.9981 and 0.9955), recovery (97.0?99.3 %), reproducibility (relative standard deviations?≤?3.1 %, n?=?6), and robustness. The method shows excellent sensitivity, selectivity, and reproducibility and has been successfully applied to analyzing maltol in a wide variety of food products.  相似文献   

2.
In the present study a glassy carbon electrode, modified with nanocomposite of gold nanoparticles/multiwalled carbon nanotubes (GNPs/MWCNTs/GCE), was used for determination of dicyclomine hydrochloride (DcCl). The results showed that synergetic effects of GNPs and MWCNTs highly improved electrochemical response and sensitivity of the sensor. The electrochemical oxidation of DcCl was investigated by cyclic voltammetry and differential pulse voltammetry. Also, scanning electron microscopy and energy dispersive x-ray spectroscopy were used to evaluate microstructure of electrochemical sensor. The effect of various experimental parameters including pH and scan rate on the voltammetric response of DcCl were investigated. Under the optimal conditions linear response was observed in range of 1.0–1.2 × 102 µmol L?1 for DcCl. The lower detection limit was found to be 0.40 µmol L?1 for DcCl. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied to the determination of DcCl in real samples.  相似文献   

3.
A new electrode was developed by one-step potentiostatic electrodeposition (at ?2.0 V for 20 s) of Au/SiO2 nanoparticles on a glassy carbon electrode. The resulting electrode (nano-Au/SiO2/GCE) was characterized by scanning electronic microscopy, X-ray photoelectron spectroscopy and electrochemical techniques. The electrochemical behavior of dihydronicotinamide adenine dinucleotide (NADH) at the nano-Au/SiO2/GCE were thoroughly investigated. Compared to the unmodified electrode, the overpotential decreased by about 300 mV, and the current response significantly increased. These changes indicated that the modified electrode showed excellent catalytic activity in the oxidation of NADH. A linear relationship was obtained in the NADH concentration range from 1.0?×?10?6 to 1.0?×?10?4 mol?L?1. In addition, amperometric sensing of ethanol at the nano-Au/SiO2/GCE in combination with alcohol dehydrogenase and nicotinamide adenine dinucleotide was successfully demonstrated. A wide linear response was also found for ethanol in the range from 5.0?×?10?5 to 1.0?×?10?3 mol?L?1 and 1.0?×?10?3 to 1.0?×?10?2 mol?L?1, respectively. The method was successfully applied to determine ethanol in beer and biological samples.  相似文献   

4.
A novel kind of carbon paste electrode (CPE) was prepared by mixing graphite powder, liquid paraffin and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. The resulting electrode was used for the simultaneous determination of guanosine and adenosine by differential pulse voltammetry. Compared to a conventional CPE, the oxidation peak currents are largely increased, and the oxidation peak potentials are negatively shifted. The electrochemical responses to guanosine and adenosine were investigated. Under optimized conditions, the calibration curves are linear in the concentration range from 1.0?×?10-6?mol?L-1 to 1.6?×?10-4?mol?L-1 for guanosine, and from 1.0?×?10-6?mol?L-1 to 2.7?×?10-4?mol?L-1 for adenosine at pH 3.5. Substances potentially interfering in the biological matrix do no interfere. The method was successfully applied to detect adenosine and guanosine in human urine without sample treatments.
Figure
Cyclic voltammograms on CPE (a) and CILE (b) for 1.0?×?10-4?mol?L-1 adenosine and 1.0?×?10-4?mol?L-1guanosine in a pH 3.5 B-R buffer solution at the scan rate of 100?mV?s-1. Inset was the typical differential pulse voltammograms of 1.0?×?10-4?mol?L-1 adenosine and 1.0?×?10-4?mol?L-1?L guanosine on CILE  相似文献   

5.
Construction and feature of a nanocomposite modified carbon paste electrode for aluminum(III) ion determination based on N,N′-dipyridoxyl (1,2-cyclohexanediamine) (PYCA) as a novel selector material will be covered by this paper. The optimum composition, Nernstian slope/linear range/detection limit in the forms of calibration graph, response time, utilizable pH range, repeatability and precision of measurements of the aluminum(III) ion using the new fabricated Al3+-CPE was evaluated. The optimal composition which performed over Al+3 ion concentration range 1.0 × 10?8 mol L?1–1.0 × 10?1 mol L?1 with near-Nernstian slope equal 20.9 ± 0.2 mV decade?1 and low detection limit about 5.0 × 10?9 mol L?1, was formed of ionophore (PYCA 3 %), binder (paraffin oil 30 %), modifier [multi-wall carbon nanotubes (MWCNTs) 1 %] & [Nanosilica (NS) 0.5 %], and inert matrix (graphite powder 65.5). The request time to give rise Nernstian response of electrode for concentrations from 1.0 × 10?8 mol L?1 to 1.0 × 10?1 mol L?1 of Al3+ ion solution was estimated about ~6 s. The new Al3+-CPE was applied in pH range 2.0–5.0 with no consequential change in potential response. To verify the selectivity of electrode toward aluminum(III) ion in the presence of different metallic cations, matched potential method was used. The obtain results in analytical applications reflect the excellent ability of this electrode to play the role as endpoint indicator electrode in both titration and direct potentiometric measurements.  相似文献   

6.
A DNA-modified carbon paste electrode (DNA-CPIE) was designed by using a mixture of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and paraffin oil as the binder. The electrochemistry of rutin at the DNA-CPIE was investigated by cyclic voltammetry and differential pulse voltammetry. Rutin exhibits a pair of reversible redox peaks in buffer solutions of pH 3.0, and respective electrochemical parameters are established. Under the optimal conditions, the oxidative peak current is linear with the concentration of rutin in the range from 8?×?10?9 to 1?×?10?5 mol L?1, and the detection limit is 1.3?×?10?9 mol L?1 (at S/N?=?3). The electrode exhibits higher sensitivity compared to DNA modified carbon paste electrode without ionic liquid and better selectivity comparing with electrodes without DNA. It also showed good performance, stability, and therefore represents a viable method for the determination of rutin.  相似文献   

7.
《Analytical letters》2012,45(4):689-704
Abstract

The voltammetric behavior of dopamine was studied at a glassy carbon electrode modified by cysteic acid, based on electrochemical oxidation of L ‐cysteine. The modified electrode showed strong electrocatalytic activity towards dopamine and good selectivity. In a phosphate buffer solution (pH 7.4), the anodic peak current obtain from the differential pulse voltammetry of dopamine was linearly dependent on its concentration in the range of 5×10?9 to 4.0×10?6mol · L?1, with a detection limit of 2×10?9mol · L?1. The low‐cost modified electrode had been applied to the determination of dopamine in human serum and urine samples with satisfactory results.  相似文献   

8.
In this article, a carbon ionic liquid electrode (CILE) was fabricated by using ionic liquid N-hexylpyridinium hexafluorophosphate as the binder and the modifier. Then urchinlike MnO2 microsphere and chitosan (CTS) was further casted on the CILE surface step-by-step to get a modified electrode that was denoted as CTS/MnO2/CILE. Cyclic voltammetric studies indicated that bisphenol A (BPA) exhibited a well-defined oxidation peak at 0.486 V in 22.83 g L?1 pH 8.0 Britton?Robinson buffer solution, which was attributed to the electro-oxidation of BPA on the modified electrode. The presence of urchinlike MnO2 microsphere on the electrode surface could increase the oxidation peak current (Ipa) greatly, which may be due to the larger surface area that could adsorb more BPA on the electrode surface. Electrochemical parameters of BPA on the modified electrode were calculated with the electron transfer coefficient (α) as 0.66 and the apparent heterogeneous electron transfer rate constant (ks) as 0.50 s?1. Under the optimal conditions, a linear relationship between the Ipa of BPA and its concentration was obtained in the range from 1.37 × 10–1 mg L?1 to 182.6 mg L?1 with the detection limit as 7.31 × 10–3 mg L?1 (3σ). The CTS/MnO2/CILE was applied to the detection of BPA content in different kinds of samples with satisfactory results.  相似文献   

9.
A carbon ionic liquid electrode (CILE) was modified with a polythionine (PTh)/multi-walled carbon nanotubes (MWCNTs) composite and used for the detection of reduced nicotinamide adenine dinucleotide (NADH). The electrode was prepared by electrochemical polymerization of thionine on the MWCNTs in neutral medium. Cyclic voltammetry indicated that the electrode was capable of mediating the oxidation of NADH at an overpotential as low as 0.03 V. Amperometric experiments showed that a sensitive and stable response towards NADH is obtained within 5 s. The linear range for the determination of NADH is from 0.8 μmol L?1 to 422 μmol L?1, with a detection limit of 0.26 μmol L?1 (S/N = 3). The wide linear range, lower detection limit and faster response towards NADH suggests that the new method potentially is useful for developing NAD+-dependent enzyme-based biosensors.  相似文献   

10.
《Analytical letters》2012,45(7):1321-1332
Abstract

A novel amperometric nitric oxide (NO) sensor based on a glassy carbon electrode modified with thionine and Nafion films has been developed. The oxidation peak current of NO increased significantly at the poly(thionine)/Nafion‐modified glassy carbon electrode (GCE), which can be used for the detection of NO. The oxidation peak current was linear with the concentration of nitric oxide over the range from 3.6×10?7 to 6.8×10?5 mol · L?1, and the detection limit was 7.2×10?8 mol · L?1. This nitric oxide sensor showed high selectivity to nitric oxide determination, and some potential interference could be eliminated effectively. The nitric oxide sensor has been applied to monitor NO release from rat kidney stimulated by L‐arginine. The results indicated the applicability of the NO sensor to biomedical samples.  相似文献   

11.
A novel and simple biosensor based on poly(indoleacetic acid) film-modified electrode (PIAA/CPE) was fabricated by electrochemical polymerization of indoleacetic acid on a carbon paste electrode (CPE) through cyclic voltammetry. The resulting electrode was characterized by scanning electron microscopy, and the electrochemical behaviors of dopamine (DA) and epinephrine (EP) at the electrode were studied. It was illustrated that PIAA/CPE had excellent electrochemical catalytic activities toward DA and EP. The anodic peak currents (I pa) were dramatically enhanced by about seven-fold for DA and ten times for EP at PIAA/CPE. Thus, the determinations of DA and EP were carried out using PIAA/CPE successfully. The linear responses were obtained in the range of 3.0?×?10?7~7.0?×?10?4 and 1.0?×?10?6 ~8.0?×?10?4 mol L?1 with the detection limits (3σ) of 1?×?10?7 and 4?×?10?7 mol L?1 corresponding with DA and EP, respectively. Moreover, the cathodic peaks of DA and EP were well-separated with a potential difference about 325 mV in pH 5.3 phosphate-buffered saline, so simultaneous determination of DA and EP was carried out in this paper. Additionally, the interference studies showed that the PIAA/CPE exhibited excellent selectivity in the presence of ascorbic acid (AA). With good selectivity and sensitivity, the present method has been successfully applied to the determination of DA and EP in pharmaceutical samples.  相似文献   

12.
《Analytical letters》2012,45(16):2445-2454
A novel voltammetric sensor using multi-wall carbon nanotubes (MWNTs) coupled with Nafion modified glassy carbon electrode (GCE) was developed for the detection of methylparaben (MP). The sensor exhibited good electrocatalytic activity toward the oxidation of MP in the phosphate buffer solution (PBS, pH 6.5). It displayed good sensitivity, repeatability, reproducibility, and long-term stability. Under the optimized conditions, the anodic peak current was linear with the concentration of MP in the range of 3 × 10?6 mol L?1 to 1 × 10?4 mol L?1. The detection limit was 1 × 10?6 mol L?1. The proposed method was successfully applied to determine MP in cosmetics with satisfactory results.  相似文献   

13.
A composite electrode was fabricated from Cu2O powder, carboxyl-functionalized multi-wall carbon nanotubes (MWCNT-COOH), and paraffin oil in the proportions 51:17:32 (w/w). This composite electrode was used for amperometric detection (CZE–AD) in simultaneous capillary zone electrophoretic analysis of chlorogenic acid, rutin, sucrose, glucose, mannose, and fructose in tobacco samples. Under the optimum conditions, the six analytes could be separated in 100 mmol L?1 NaOH buffer within 30 min. Good linearity was achieved in the range 1 × 10?7–1 × 10?4 mol L?1 for the two polyphenols and 5 × 10?6–1 × 10?3 mol L?1 for the four sugars. The detection limits (S/N = 3) for the polyphenols and sugars were as low as 10?8 mol L?1 and 10?6 mol L?1, respectively.  相似文献   

14.
In this work, a simple method for electroanalytical determination of 17α-ethinylestradiol (EE2) hormone in natural waters was developed using a boron-doped diamond electrode (BDD). The analyses were performed using square wave voltammetry and the parameters were optimized. The results showed a well-defined irreversible oxidation peak (BR buffer 0.1 mol L?1, pH 8.0) at +0.65 V (vs. Ag/AgCl). The voltammetric results showed also that the oxidation process is controlled by adsorption of species and indicated that there are two electrons involved. The obtained analytical curves for 17α-ethinylestradiol presented good linearity in the concentration range 9.9?×?10?7 to 5.2?×?10?6 mol L?1 in utlrapure water and 7.9?×?10?7 to 5.2?×?10?6 mol L?1 in natural water samples (supply dam). Detection limits (DL) obtained were between 2.4?×?10?7 and 7.5?×?10?7 mol L?1 and quantification limits (QL) between 7.9?×?10?7 and 2.5?×?10?6 mol L?1. The recovery experiments showed values between 86 and 114 % for spiked samples thus indicating the applicability of the electroanalytical methodology to quantify 17α-ethinylestradiol directly in natural water of supply Dam (Billings Dam in Diadema-SP. Brazil), without any preconcentration or derivatization.  相似文献   

15.
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of multiwalled carbon nanotubes and Amberlite IR-120. The anodic stripping voltammograms depend, to a large extent, on the composition of the modified electrode and the preconcentration conditions. Under optimum conditions, the anodic peak current at around ?0.57 V is linearly related to the concentration of Pb(II) in the range from 9.6?×?10?8 to 1.7?×?10?6 mol L?1 (R?=?0.998). The detection limit is 2.1?×?10?8 mol L?1, and the relative standard deviation (RSD) at 0.24?×?10?6 mol L?1 is 1.7% (n?=?6). The modified electrode was applied to the determination of Pb(II) using the standard addition method; the results showed average relative recoveries of 95% for the samples analysed.
Figure
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of MWCNT and Amberlite IR-120. The method showed a good linearity for 9.6?×?10?8 - 1.7?×?10?6 mol L?1 and detection limit of 2.1?×?10?8 mol L?1.  相似文献   

16.
An ionic liquid N‐hexylpyridinium hexafluorophosphate (HPPF6) modified carbon paste electrode was fabricated for the sensitive voltammetric determination of adenosine in this paper. Carbon ionic liquid electrode (CILE) was prepared by mixing graphite powder and HPPF6 together and the CILE was characterized by scanning electron microscopy (SEM) and electrochemical methods. The electrochemical behaviors of adenosine on the CILE were studied carefully. Compared with the traditional carbon paste electrode (CPE), a small negative shift of the oxidation peak potential appeared with greatly increase of the oxidation peak current, which indicated the presence of ionic liquid in the carbon paste not only as the binder but also as the modifier and promoter. Under the optimal conditions the oxidation peak current increased with the adenosine concentration in the range from 1.0×10?6 mol/L to 1.4×10?4 mol/L with the detection limit of 9.1×10?7 mol/L (S/N=3) by differential pulse voltammetry. The proposed method was applied to the human urine samples detection with satisfactory results.  相似文献   

17.
A mesoporous silica-based hybrid material composed of silica xerogel modified with an ionic silsesquioxane, which contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group, was obtained. The silsesquioxane film is highly dispersed on the surface. This hybrid material was utilized to develop a carbon paste electrode (CPE) for determination of methyl parathion. Transmission FTIR, elemental analysis and N2 adsorption–desorption isotherms were used for characterization of the material. The electrochemical behavior of methyl parathion was evaluated by cyclic voltammetry and differential pulse voltammetry. It was observed a linear response to methyl parathion in the concentration range from 1.25 × 10?7 to 2.56 × 10?6 mol L?1 by employing the carbon paste electrode, in Britton–Robinson buffer solution (pH 6). The achieved detection limit (3 SD of the blank divided by the slope of calibration curve) was 0.013 µmol L?1 and sensitivity was 6.3 µA µmol L?1. This result shows the potentiality of this electrode for application as electrochemical sensor for methyl parathion.  相似文献   

18.
An electrochemical oxidation route was developed for sensitive and selective assay of nitrotriazolone (NTO) explosive in some environmental samples on a multi-walled carbon nanotube (MWCNTs)/TiO2 nanocomposite paste electrode, for prevention of the analytical interference of conventional reducible energetic compounds. Detailed evaluations were made for the electrochemical behaviour of NTO on the modified electrode by adsorptive stripping voltammetry, electrochemical impedance spectroscopy (EIS) and chronoamperometry techniques in the pH range of 2.0–10.0. Parameters such as diffusion coefficient constant of NTO were calculated, and various experimental conditions were also optimised. Under optimal conditions the calibration curve had two linear dynamic ranges of 130.0–3251.5 μg L?1 and 6.5–26.0 mg L?1 with a detection limit of 26.0 μg L?1 (0.2 μmol L?1) and precision of <3%. This electrochemical sensor was further applied to determine NTO in real soil and water samples with satisfactory results.  相似文献   

19.
A new thiomorpholine-functionalized nanoporous mesopore Mobil Composition of Matter No. 41 (MCM-41), abbreviated as TMMCM-41, was synthesized and applied as a sensing material in construction of a cadmium carbon paste electrode. The electrode composition of 20.1%wt TMMCM-41, 54.0% graphite powder, 25.9% paraffin oil showed the stable potential response to Cd2+ ions with the Nernstian slope of 28.6 mV decade?1 (±1.8 mV decade?1) over a wide linear concentration range of 10?6 to 10?2?mol L?1 with a detection limit of 6?×?10?7 mol L?1. The electrode has fast response time and long-term stability (more than 4 months). The proposed electrode was used to determine the concentration of cadmium in tap water contaminated by this metal and cadmium electroplating waste water samples.  相似文献   

20.
An electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles using a potentiostatic method. The effects of pH, ratio between template molecule and monomer, number of cycles for electropolymerization, and of the solution for extraction were optimized. The current of the electro-active model system hexacyanoferrate(III) and hexacyanoferrate(IV) decreased linearly with successive addition of ThPh in the concentration range between 4.0?×?10?7?~?1.5?×?10?5 mol·L?1 and 2.4?×?10?4?~?3.4?×?10?3 mol·L?1, with a detection limit of 1.0?×?10?7 mol·L?1. The sensor has an excellent recognition capability for ThPh compared to structurally related molecules, can be regenerated and is stable.
Figure
In this paper, an electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine (o-PD) on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles to enhance the sensitivity of the sensor. Therefore, the sensor showed a high sensitivity for ThPh determining. Peak current of [Fe(CN)6]3?/[Fe(CN)6]4? varied linearly with the concentration of ThPh in the range of 4.0×10-7~1.5×10-5 mol·L-1 and 2.4×10-4~3.4×10-3 mol·L-1, and the detection limit reached 1.0×10-7 mol·L-1. Compared to structurally related molecules, the sensor also has a high recognition capability for ThPh. With excellent regeneration property and stability, the present sensor maybe provides a new class of polymer modified electrodes for sensor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号