首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 673 毫秒
1.
A combined experimental and theoretical study addresses the concertedness of the thermal Curtius rearrangement. The kinetics of the Curtius rearrangements of methyl 1-azidocarbonyl cycloprop-2-ene-1-carboxylate and methyl 1-azidocarbonyl cyclopropane-1-carboxylate were studied by (1)H NMR spectroscopy, and there is close agreement between calculated and experimental enthalpies and entropies of activation. Density functional theory (DFT) calculations (B3LYP/6-311+G(d,p)) on these same acyl azides suggest gas phase barriers of 27.8 and 25.1 kcal/mol. By comparison, gas phase activation barriers for the rearrangement of acetyl, pivaloyl, and phenyl azides are 27.6, 27.4, and 30.0 kcal/mol, respectively. The barrier for the concerted Curtius reaction of acetyl azide at the CCSD(T)/6-311+G(d,p) level exhibited a comparable activation energy of 26.3 kcal/mol. Intrinsic reaction coordinate (IRC) analyses suggest that all of the rearrangements occur by a concerted pathway with the concomitant loss of N2. The lower activation energy for the rearrangement of methyl 1-azidocarbonyl cycloprop-2-ene-1-carboxylate relative to methyl 1-azidocarbonyl cyclopropane-1-carboxylate was attributed to a weaker bond between the carbonyl carbon and the three-membered ring in the former compound. Calculations on the rearrangement of cycloprop-2-ene-1-oyl azides do not support pi-stabilization of the transition state by the cyclopropene double bond. A comparison of reaction pathways at the CBS-QB3 level for the Curtius rearrangement versus the loss of N2 to form a nitrene intermediate provides strong evidence that the concerted Curtius rearrangement is the dominant process.  相似文献   

2.
Thermal isomerization of acetylnitrene: a quantum-chemical study   总被引:1,自引:0,他引:1  
The electronic structure and pathways of thermal isomerization of formylnitrene and acetylnitrene were studied by the B3LYP/6-311G(d,p) density functional method and ab initio G2(MP2,SVP) computational procedure using the geometries obtained from B3LYP calculations. According to G2 calculations, both nitrenes have singlet ground states while the energies of the corresponding triplet states are 2.8 and 5.7 kcal mol–1 higher. For acetylnitrene, the activation barrier to the nitrene isocyanate isomerization was estimated at 28.9 kcal mol–1 (G2). Calculations revealed no pathway for single-step isomerization of nitrene into cyanate in both systems. The formation of methyl cyanate from isocyanate is thermodynamically unfavorable (E = 26.5 kcal mol–1) and requires a high activation barrier (89.4 kcal mol–1) should be overcome. Based on the results obtained, the pathways of transformation of nitrene formed in thermal decomposition of acetyl azide (Curtius rearrangement) were analyzed.  相似文献   

3.
The free energies of reaction (DeltaG) and activation (DeltaG) were determined for the Curtius-like rearrangement of dimethylphosphinoyl, dimethylphosphinyl, and dimethylphosphoryl azides as well as the corresponding singlet and triplet nitrenes by CBS-QB3 and B3LYP computational methods. From CASSCF calculations, it was established that the closed-shell configuration was the lower energy singlet state for each of these nitrenes. The triplet states of dimethylphosphinyl- and dimethylphosphorylnitrene are the preferred ground states. However, the closed-shell singlet state is the ground state for dimethylphosphinoylnitrene. The CBS-QB3 DeltaG values for the Curtius-like rearrangements of dimethylphosphinyl and dimethylphosphoryl azides were 45.4 and 47.0 kcal mol-1, respectively. For the closed-shell singlet dimethylphosphinyl- and dimethylphosphorylnitrene, the CBS-QB3 DeltaG values for the rate-limiting step of the Curtius-like rearrangement were 22.9 and 18.0 kcal mol-1, respectively. It is unlikely that the nitrenes will undergo a Curtius-like rearrangement because of competing bimolecular reactions that have lower activation barriers. The pharmacology of weaponized organophosphorus compounds can be investigated using phosphorylnitrenes as photoaffinity labels. Dominant bimolecular reactivity is a desirable quality for a photoaffinity label to possess, and thus, the resistance of phosphorylnitrenes to intramolecular Curtius-like rearrangements increases their usefulness as photoaffinity labels.  相似文献   

4.
Molecular modeling demonstrates that the first excited state of the triplet ketone (T1K) in azide 1b has a (pi,pi*) configuration with an energy that is 66 kcal/mol above its ground state and its second excited state (T2K) is 10 kcal/mol higher in energy and has a (n,pi*) configuration. In comparison, T1K and T2K of azide 1a are almost degenerate at 74 and 77 kcal/mol above the ground state with a (n,pi*) and (pi,pi*) configuration, respectively. Laser flash photolysis (308 nm) of azide 1b in methanol yields a transient absorption (lambdamax=450 nm) due to formation of T1K, which decays with a rate of 2.1 x 105 s-1 to form triplet alkylnitrene 2b (lambdamax=320 nm). The lifetime of nitrene 2b was measured to be 16 ms. In contrast, laser flash photolysis (308 nm) of azide 1a produced transient absorption spectra due to formation of nitrene 2a (lambdamax=320 nm) and benzoyl radical 3a (lambdamax=370 nm). The decay of 3a is 2 x 105 s-1 in methanol, whereas nitrene 2a decays with a rate of approximately 91 s-1. Thus, T1K (pi,pi*) in azide 1b leads to energy transfer to form nitrene 2b; however, alpha-cleavage is not observed since the energy of T2K (n,pi*) is 10 kcal/mol higher in energy than T1K, and therefore, T2K is not populated. In azide 1a both alpha-cleavage and energy transfer are observed from T1K (n,pi*) and T2K (pi,pi*), respectively, since these triplet states are almost degenerate. Photolysis of azide 1a yields mainly product 4, which must arise from recombination of benzoyl radicals 3a with nitrenes 2a. However, products studies for azide 1b also yield 4b as the major product, even though laser flash photolysis of azide 1b does not indicate formation of benzoyl radical 3b. Thus, we hypothesize that benzoyl radicals 3 can also be formed from nitrenes 2. More specifically, nitrene 2 does undergo alpha-photocleavage to form benzoyl radicals and iminyl radicals. The secondary photolysis of nitrenes 2 is further supported with molecular modeling and product studies.  相似文献   

5.
Exposure of 2-naphthyl azide in acetonitrile at ambient temperature to femtosecond pulses of 266 nm light produces a transient absorption with maxima at 350 and 420 nm. The carrier of the 350 nm band decays more rapidly than that of the 420 nm band which has a lifetime of 1.8 ps. Analogous experiments with 1-chloro-2-naphthyl azide in methanol allow the assignment of the 350 nm band to a singlet excited state of 2-naphthyl azide and the carrier of the 420 nm band to singlet 2-naphthylnitrene. This reactive intermediate has the shortest lifetime of any singlet nitrene observed to date and is a true reactive intermediate. Computational studies at the RI-CC2 level of theory support these conclusions and suggest that initial excitation populates the S2 state of 2-naphthyl azide. The S2 state, best characterized as a pi --> (pi*, aryl) transition, has a geometry similar to S0. S2 of 2-naphthyl azide can then populate the S1 state, a pi --> (in-plane, pi*, azide) excitation, and in the S1 state, electron density is depleted along the proximal N-N bond. S1 is dissociative along that N-N coordinate to form the singlet nitrene, and with a barrier of only approximately 5 kcal/mol for N2 extrusion.  相似文献   

6.
The singlet—triplet energy splitting (ΔE ST = E S E T ) was calculated for formylnitrene (5) and for the syn- and anti-rotamers of carboxynitrene HOC(O)N (6) by the CCSD(T) method. Extrapolation of ΔE ST to a complete basis set was calculated to be negative for 5 and strongly positive for 6. Similar results were obtained by the G2 procedure. The reason for the dramatic stabilization of the singlet state appeared to be a special bonding interaction between the nitrogen and oxygen atoms, which results in the structure intermediate between those of nitrene and oxazirene. It was found that the B3LYP/6-31G(d) method overestimates ΔE ST by ∼9 kcal mol−1 for 5 and by ∼7 kcal mol−1 for 6. Taking into account this overestimation and the results of DFT calculations, it was concluded that benzoylnitrene has a singlet ground state. It was proved experimentally using photolysis of benzoyl azide in an argon matrix at 12 K that benzoylnitrene has a singlet ground state and its structure is similar to that of oxazirene. Nevertheless, these singlet intermediates have low barrier to the aziridine formation, which is traditionally considered to be a typical singlet nitrene reaction.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 519–526, March, 2005.  相似文献   

7.
Photolysis of N-benzoyl-S,S-diphenylsulfilimine or N-benzoyl dibenzothiophene sulfilimine produces PhNCO and also benzoylnitrene. Direct observation of the triplet nitrene, energetic differences between the singlet and triplet state of the nitrene, and oxygen quenching experiments suggest that the triplet nitrene derives from the triplet excited state of the sulfilimine precursors, rather than through equilibration of nearby singlet and triplet states of the nitrene itself. In acetonitrile, the formation of an ylide, followed by cyclization to the corresponding oxadiazole, is the predominant nitrene chemistry, occurring on the time scale of a few microseconds and few tens of microseconds, respectively. Trapping experiments with substrates such as cis-4-octene suggest that reactivity of the nitrene is mainly through the singlet channel, despite a fairly small energy gap between the singlet ground state and the triplet.  相似文献   

8.
Quantum mechanical calculations using restricted and unrestricted B3LYP density functional theory, CASPT2, and CBS-QB3 methods for the dimerization of 1,3-cyclohexadiene (1) reveal several highly competitive concerted and stepwise reaction pathways leading to [4 + 2] and [2 + 2] cycloadducts, as well as a novel [6 + 4] ene product. The transition state for endo-[4 + 2] cycloaddition (endo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 28.7 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 19.0 kcal/mol) is not bis-pericyclic, leading to nondegenerate primary and secondary orbital interactions. However, the C(s) symmetric second-order saddle point on the B3LYP energy surface is only 0.3 kcal/mol above endo-2TS. The activation enthalpy for the concerted exo-[4 + 2] cycloaddition (exo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 30.1 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 21.1 kcal/mol) is 1.4 kcal/mol higher than that of the endo transition state. Stepwise pathways involving diallyl radicals are formed via two different C-C forming transition states (rac-5TS and meso-5TS) and are predicted to be competitive with the concerted cycloaddition. Transition states were located for cyclization from intermediate rac-5 leading to the endo-[4 + 2] (endo-2) and exo-[2 + 2] (anti-3) cycloadducts. Only the endo-[2 + 2] (syn-3) transition state was located for cyclization of intermediate meso-5. The novel [6 + 4] "concerted" ene transition state (threo-4TS, DeltaH(double dagger)(UB3LYP(0K)) = 28.3 kcal/mol) is found to be unstable with respect to an unrestricted calculation. This diradicaloid transition state closely resembles the cyclohexadiallyl radical rather than the linked cyclohexadienyl radical. Several [3,3] sigmatropic rearrangement transition states were also located and have activation enthalpies between 27 and 31 kcal/mol.  相似文献   

9.
Electronic structures, partial atomic charges, singlet-triplet gaps (Delta E ST), substituent effects, and mechanisms of 1,2-rearrangements of 1,3-oxazol-2-ylidene ( 5) and 4,5-dimethyl- ( 6), 4,5-difluoro- ( 7), 4,5-dichloro- ( 8), 4,5-dibromo- ( 9), and 3-methyl-1,3-oxazol-2-ylidene ( 10) to the corresponding 1,3-oxazoles have been studied using complete-basis-set methods (CBS-QB3, CBS-Q, CBS-4M), second-order M?ller-Plesset perturbation method (MP2), hybrid density functionals (B3LYP, B3PW91), coupled-cluster theory with single and double excitations (CCSD) and CCSD plus perturbative triple excitations [CCSD(T)], and the quadratic configuration interaction method including single and double excitations (QCISD) and QCISD plus perturbative triple excitations [QCISD(T)]. The 6-311G(d,p), 6-31+G(d,p), 6-311+G(d,p), and correlation-consistent polarized valence double-xi (cc-pVDZ) basis sets were employed. The carbenes have singlet ground states, and the CBS-QB3 and CBS-Q methods predict Delta E ST values for 5- 8 and 10 of 79.9, 79.8, 74.7, 77.0, and 82.0 kcal/mol, respectively. CCSD(T), QCISD(T), B3LYP, and B3PW91 predict smaller Delta E ST values than CBS-QB3 and CBS-Q, with the hybrid density functionals predicting the smallest values. The concerted unimolecular exothermic out-of-plane 1,2-rearrangements of singlet 1,3-oxazol-2-ylidenes to their respective 1,3-oxazoles proceed via cyclic three-center transition states. The CBS-predicted barriers to the 1,2-rearrangements of singlet carbenes 5- 9 to their respective 1,3-oxazoles are 41.4, 40.4, 37.8, 40.4, and 40.5 kcal/mol, respectively. During the 1,2-rearrangements of singlet 1,3-oxazol-2-ylidenes 5- 9, there is a decrease in electron density at oxygen, N3 (the migration origin), and C5 and an increase in electron density at C2 (the migration terminus), C4, and the partially positive migrating hydrogen.  相似文献   

10.
The decomposition of organic carbonylazides can lead to the formation of nitrenes. Ethoxycarbonylnitrene is formed in the photolytic and thermal decomposition of ethyl azidoformate and by α-elimination from N-(p-nitrobenzenesulfonyloxy)urethan. Both of the possible electronic states of this nitrene take part in intermolecular reactions. Pure singlet nitrene is formed by α-elimination from the urethan and on thermal decomposition of ethyl azidoformate, but changes so rapidly into the triplet form that the reactions of both forms are observed. Singlet ethoxycarbonylnitrene undergoes selective and stereospecific insertion into C? H bonds and adds stereospecifically to olefins. Triplet ethoxycarbonylnitrene, however, does not undergo insertion into C? H bonds, and adds to olefins with complete loss of the geometric configuration. By following quantitatively the stereospecificity of the addition reaction and by selective interception of the triplet and singlet forms of the nitrene, it can be shown that the photolysis of ethyl azidoformate leads directly to nitrene of which one third is in the triplet state. In the decomposition of aryl- and alkylcarbonylazides (acid azides), the removal of nitrogen is accompanied by a synchronous rearrangement to isocyanates (Curtius rearrangement). In this system, nitrenes are obtained only by photolysis. They add to double bonds and undergo very selective insertion into C? H bonds, but do not rearrange at a measurable rate to isocyanates. The photolytic Curtius rearrangement is also a concerted reaction.  相似文献   

11.
The conformational distribution and unimolecular decomposition pathways for the n-propylperoxy radical have been generated at the CBS-QB3, B3LYP/6-31+G and mPW1K/6-31+G levels of theory. At each of the theoretical levels, the 298 K Boltzmann distributions and rotational profiles indicate that all five unique rotamers of the n-propylperoxy radical can be expected to be present in significant concentrations at thermal equilibrium. At the CBS-QB3 level, the 298 K distribution of rotamers is predicted to be 28.1, 26.4, 19.6, 14.0, and 11.9% for the gG, tG, gT, gG', and tT conformations, respectively. The CBS-QB3 C-OO bond dissociation energy (DeltaH298 K) for the n-propylperoxy radical has been calculated to be 36.1 kcal/mol. The detailed CBS-QB3 potential energy surface for the unimolecular decomposition of the n-propylperoxy radical indicates that important bimolecular products could be derived from two 1,4-H transfer mechanisms available at T < 500 K, primarily via an activated n-propylperoxy adduct.  相似文献   

12.
A thorough study of the reaction of singlet oxygen with 1,3-cyclohexadiene has been made at the B3LYP/6-31G(d) and CASPT2(12e,10o) levels. The initial addition reaction follows a stepwise diradical pathway to form cyclohexadiene endoperoxide with an activation barrier of 6.5 kcal/mol (standard level = CASPT2(12e,10o)/6-31G(d); geometries and zero-point corrections at B3LYP/6-31G(d)), which is consistent with an experimental value of 5.5 kcal/mol. However, as the enthalpy of the transition structure for the second step is lower than the diradical intermediate, the reaction might also be viewed as a nonsynchronous concerted reaction. In fact, the concertedness of the reaction is temperature dependent since entropy differences create a free energy barrier for the second step of 1.8 kcal/mol at 298 K. There are two ene reactions; one is a concerted mechanism (DeltaH(double dagger) = 8.8 kcal/mol) to 1-hydroperoxy-2,5-cyclohexadiene (5), while the other, which forms 1-hydroperoxy-2,4-cyclohexadiene (18), passes through the same diradical intermediate (9) as found on the pathway to endoperoxide. The major pathway from the endoperoxide is O-O bond cleavage (22.0 kcal/mol barrier) to form a 1,4-diradical (25), which is 13.9 kcal/mol less stable than the endoperoxide. From the diradical, two low-energy pathways exist, one to epoxyketone (29) and the other to the diepoxide (27), where both products are known to be formed experimentally with a product ratio sensitive to the nature of substitutents. A significantly higher activation barrier leads to C-C bond cleavage and direct formation of maleic aldehyde plus ethylene.  相似文献   

13.
Time-resolved infrared (TRIR) spectroscopy, product studies, and computational methods were applied to the photolysis of sulfilimines derived from dibenzothiophene that were expected to release acetylnitrene, trifluoroacetylnitrene, mesylnitrene, and tosylnitrene. All three methods provided results for acetylnitrene consistent with literature precedent and analogous experiments with the benzoylnitrene precursor, i.e., that the ground-state multiplicity is singlet. In contrast, product studies clearly indicate triplet reactivity for trifluoroacetylnitrene, though TRIR experiments were more ambiguous. Product studies suggest that these sulfilimines are superior sources for sulfonylnitrenes, which have triplet grounds states, to the corresponding azides, and computational studies shed light on the electronic structure of the nitrenes.  相似文献   

14.
A restricted-open-shell model chemistry based on the complete basis set-quadratic Becke3 (CBS-QB3) model is formulated and denoted ROCBS-QB3. As the name implies, this method uses spin-restricted wave functions, both for the direct calculations of the various components of the electronic energy and for extrapolating the correlation energy to the complete-basis-set limit. These modifications eliminate the need for empirical corrections that are incorporated in standard CBS-QB3 to compensate for spin contamination when spin-unrestricted wave functions are used. We employ an initial test set of 19 severely spin-contaminated species including doublet radicals and both singlet and triplet biradicals. The mean absolute deviation (MAD) from experiment for the new ROCBS-QB3 model (3.6+/-1.5 kJ mol(-1)) is slightly smaller than that of the standard unrestricted CBS-QB3 version (4.8+/-1.5 kJ mol(-1)) and substantially smaller than the MAD for the unrestricted CBS-QB3 before inclusion of the spin correction (16.1+/-1.5 kJ mol(-1)). However, when applied to calculate the heats of formation at 298 K for the moderately spin-contaminated radicals in the G2/97 test set, ROCBS-QB3 does not perform quite as well as the standard unrestricted CBS-QB3, with a MAD from experiment of 3.8+/-1.6 kJ mol(-1) (compared with 2.9+/-1.6 kJ mol(-1) for standard CBS-QB3). ROCBS-QB3 performs marginally better than standard CBS-QB3 for the G2/97 set of ionization energies with a MAD of 4.1+/-0.1 kJ mol(-1) (compared with 4.4+/-0.1 kJ mol(-1)) and electron affinities with a MAD of 3.9+/-0.2 kJ mol(-1) (compared with 4.3+/-0.2 kJ mol(-1)), but the differences in MAD values are comparable to the experimental uncertainties. Our overall conclusion is that ROCBS-QB3 eliminates the spin correction in standard CBS-QB3 with no loss in accuracy.  相似文献   

15.
The vertical and adiabatic singlet-triplet energy splittings (Delta E ST) of phenylnitrene were computed by a variety of multireference configuration interaction and perturbation theory methods employing basis sets of up to quadruple-xi quality and extrapolation to the complete basis set limit. The vertical and adiabatic energy gaps are 18.9 and 15.9 kcal mol (-1), respectively, the latter in reasonable agreement with the revised experimental value of 15.1 +/- 0.2 kcal mol (-1). The energy difference between both states at the geometry of the a (1)A 2 singlet state was also considered and amounts to 13.8 kcal mol (-1). In obtaining accurate state energy splittings, basis set completeness turns out to be a more important issue than the level of dynamical electron correlation treatment. Density functional theory that is frequently employed to investigate phenylnitrenes and their rearrangements yields varying results and, depending on the functional, gives adiabatic energy differences between 9 and 16 kcal mol (-1). The b (1)A 1 state has a similar geometry as the ground state of 1 and is 31 kcal mol (-1) higher in energy. According to best estimates, the next higher singlet states, c (1)A 1 and d (1)B 1, are 57 and 72 kcal mol (-1) above the ground state. In the triplet manifold, vertical excitation energies to the A (3)B 1 and B (3)A 2 states are 71 and 77 kcal mol (-1), respectively.  相似文献   

16.
Ultrafast laser flash photolysis (266 nm) of para- and ortho-biphenyl azide in acetonitrile produces azide excited states that have broad absorption bands centered at 480 nm. The para-biphenyl azide excited singlet state has a lifetime of 100 fs. The excited-state lifetime of the ortho-azide isomer is 450 +/- 150 fs. Decay of the azide excited states is accompanied by the formation of the corresponding known singlet nitrenes (para, lambdamax = 350 nm, ortho, lambdamax = 400 nm). Singlet para-biphenylnitrene is born with excess energy and undergoes vibrational cooling with a time constant of 11 ps to form the long-lived (tau approximately 9 ns) relaxed singlet nitrene. Singlet ortho-biphenylnitrene decays with a lifetime of 16 ps in acetonitrile at ambient temperature.  相似文献   

17.
Accurate barriers for the 1,3-dipolar cycloadditions of ozone with acetylene and ethylene have been determined via the systematic extrapolation of ab initio energies within the focal point approach of Allen and co-workers. Electron correlation has been accounted for primarily via coupled cluster theory, including single, double, and triple excitations, as well as a perturbative treatment of connected quadruple excitations [CCSD, CCSD(T), CCSDT, and CCSDT(Q)]. For the concerted [4 + 2] cycloadditions, the final recommended barriers are DeltaH(0K) = 9.4 +/- 0.2 and 5.3 +/- 0.2 kcal mol(-1) for ozone adding to acetylene and ethylene, respectively. These agree with recent results of Cremer et al. and Anglada et al., respectively. The reaction energy for O3 + C2H2 exhibits a protracted convergence with respect to inclusion of electron correlation, with the CCSDT/cc-pVDZ and CCSDT(Q)/cc-pVDZ values differing by 2.3 kcal mol-1. Recommended enthalpies of formation (298 K) for cycloadducts 1,2,3-trioxole and 1,2,3-trioxolane are +32.8 and -1.6 kcal mol(-1), respectively. Popular composite ab initio approaches [CBS-QB3, CBS-APNO, G3, G3B3, G3(MP2)B3, G4, G4(MP3), and G4(MP2)] predict a range of barrier heights for these systems. The CBS-QB3 computed barrier for ozone and acetylene, DeltaH(0K) = 4.4 kcal mol(-1), deviates by 5 kcal mol(-1) from the focal point value. CBS-QB3 similarly underestimates the barrier for the reaction of ozone and ethylene, yielding a prediction of only 0.7 kcal mol(-1). The errors in the CBS-QB3 results are significantly larger than mean errors observed in application to the G2 test set. The problem is traced to the nontransferability of MP2 basis set effects in the case of these reaction barriers. The recently published G4 and G4(MP2) approaches perform substantially better for O3 + C2H2, predicting enthalpy barriers of 9.0 and 8.4 kcal mol(-1), respectively. For the prediction of these reaction barriers, the additive corrections applied in the majority of the composite approaches considered lead to worse agreement with the reference focal point values than would be obtained relying only on single point energies evaluated at the highest level of theory utilized within each composite method.  相似文献   

18.
The singlet ground ((approximate)X(1)Sigma1+) and excited (1Sigma-,1Delta) states of HCP and HPC have been systematically investigated using ab initio molecular electronic structure theory. For the ground state, geometries of the two linear stationary points have been optimized and physical properties have been predicted utilizing restricted self-consistent field theory, coupled cluster theory with single and double excitations (CCSD), CCSD with perturbative triple corrections [CCSD(T)], and CCSD with partial iterative triple excitations (CCSDT-3 and CC3). Physical properties computed for the global minimum ((approximate)X(1)Sigma+HCP) include harmonic vibrational frequencies with the cc-pV5Z CCSD(T) method of omega1=3344 cm(-1), omega2=689 cm(-1), and omega3=1298 cm(-1). Linear HPC, a stationary point of Hessian index 2, is predicted to lie 75.2 kcal mol(-1) above the global minimum HCP. The dissociation energy D0[HCP((approximate)X(1)Sigma+)-->H(2S)+CP(X2Sigma+)] of HCP is predicted to be 119.0 kcal mol(-1), which is very close to the experimental lower limit of 119.1 kcal mol(-1). Eight singlet excited states were examined and their physical properties were determined employing three equation-of-motion coupled cluster methods (EOM-CCSD, EOM-CCSDT-3, and EOM-CC3). Four stationary points were located on the lowest-lying excited state potential energy surface, 1Sigma- -->1A", with excitation energies Te of 101.4 kcal mol(-1) (1A"HCP), 104.6 kcal mol(-1)(1Sigma-HCP), 122.3 kcal mol(-1)(1A" HPC), and 171.6 kcal mol(-1)(1Sigma-HPC) at the cc-pVQZ EOM-CCSDT-3 level of theory. The physical properties of the 1A" state with a predicted bond angle of 129.5 degrees compare well with the experimentally reported first singlet state ((approximate)A1A"). The excitation energy predicted for this excitation is T0=99.4 kcal mol(-1) (34 800 cm(-1),4.31 eV), in essentially perfect agreement with the experimental value of T0=99.3 kcal mol(-1)(34 746 cm(-1),4.308 eV). For the second lowest-lying excited singlet surface, 1Delta-->1A', four stationary points were found with Te values of 111.2 kcal mol(-1) (2(1)A' HCP), 112.4 kcal mol(-1) (1Delta HPC), 125.6 kcal mol(-1)(2(1)A' HCP), and 177.8 kcal mol(-1)(1Delta HPC). The predicted CP bond length and frequencies of the 2(1)A' state with a bond angle of 89.8 degrees (1.707 A, 666 and 979 cm(-1)) compare reasonably well with those for the experimentally reported (approximate)C(1)A' state (1.69 A, 615 and 969 cm(-1)). However, the excitation energy and bond angle do not agree well: theoretical values of 108.7 kcal mol(-1) and 89.8 degrees versus experimental values of 115.1 kcal mol(-1) and 113 degrees. of 115.1 kcal mol(-1) and 113 degrees.  相似文献   

19.
The photochemistry of 2-naphthoyl azide was studied in various solvents by femtosecond time-resolved transient absorption spectroscopy with IR and UV-vis detection. The experimental findings were interpreted with the aid of computational studies. Using polar and nonpolar solvents, the formation and decay of the first singlet excited state (S(1)) was observed by both time-resolved techniques. Three processes are involved in the decay of the S(1) excited state of 2-naphthoyl azide: intersystem crossing, singlet nitrene formation, and isocyanate formation. The lifetime of the S(1) state decreases significantly as the solvent polarity increases. In all solvents studied, isocyanate formation correlates with the decay of the azide S(1) state. Nitrene formation correlates with the decay of the relaxed S(1) state only upon 350 nm excitation (S(0) → S(1) excitation). When S(n) (n ≥ 2) states are populated upon excitation (λ(ex) = 270 nm), most nitrene formation takes place within a few picoseconds through the hot S(1) and higher singlet excited states (S(n)) of 2-naphthoyl azide. The data correlate with the results of electron density difference calculations that predict nitrene formation from the higher-energy singlet excited states, in addition to the S(1) state. For all of these experiments, no recovery of the ground state was observed up to 3 ns after photolysis, which indicates that both internal conversion and fluorescence have very low efficiencies.  相似文献   

20.
We report a solid-state (23)Na NMR study of monovalent cation (Li(+), Na(+), K(+), Rb(+), Cs(+) and NH(4) (+)) binding to double-stranded calf thymus DNA (CT DNA) at low relative humidity, ca 0-10%. Results from (23)Na--(31)P rotational echo double resonance (REDOR) NMR experiments firmly establish that, at low relative humidity, monovalent cations are directly bound to the phosphate group of CT DNA and are partially dehydrated. On the basis of solid-state (23)Na NMR titration experiments, we obtain quantitative thermodynamic parameters concerning the cation-binding affinity for the phosphate group of CT DNA. The free energy difference (DeltaG degrees ) between M(+) and Na(+) ions is as follows: Li(+) (-1.0 kcal mol(-1)), K(+) (7.2 kcal mol(-1)), NH(4) (+) (1.0 kcal mol(-1)), Rb(+) (4.5 kcal mol(-1)) and Cs(+) (1.5 kcal mol(-1)). These results suggest that, at low relative humidity, the binding affinity of monovalent cations for the phosphate group of CT DNA follows the order: Li(+) > Na(+) > NH(4) (+) > Cs(+) > Rb(+) > K(+). This sequence is drastically different from that observed for CT DNA in solution. This discrepancy is attributed to the different modes of cation binding in dry and wet states of DNA. In the wet state of DNA, cations are fully hydrated. Our results suggest that the free energy balance between direct cation-phosphate contact and dehydration interactions is important. The reported experimental results on relative ion-binding affinity for the DNA backbone may be used for testing theoretical treatment of cation-phosphate interactions in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号