首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time-dependent density functional theory method was performed to investigate the electronically excited states of the hydrogen-bonded complex formed by coumarin 102 (C102) chromophore and the hydrogen-donating aniline solvent. At the same time, the electronic excited-state hydrogen-bonding dynamics for the photoexcited C102 chromophore in solution was also reconsidered. We demonstrated that the intermolecular hydrogen bond CO...H-N between C102 and aniline molecules is significantly strengthened in the electronically excited-state upon photoexcitation, since the calculated hydrogen bond energy increases from 25.96 kJ/mol in the ground state to 37.27 kJ/mol in the electronically excited state. Furthermore, the infrared spectra of the hydrogen-bonded C102-aniline complex in both the ground state and the electronically excited state were also calculated. The hydrogen bond strengthening in the electronically excited-state was confirmed for the first time by monitoring the spectral shift of the stretching vibrational mode of the hydrogen-bonded N-H group in different electronic states. Therefore, we believed that the dispute about the intermolecular hydrogen bond cleavage or strengthening in the electronically excited-state of coumarin 102 chromophore in hydrogen donating solvents has been clarified by our studies.  相似文献   

2.
The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state hydrogen-bonding dynamics of fluorenone (FN) in hydrogen donating methanol (MeOH) solvent. The infrared spectra of the hydrogen-bonded FN-MeOH complex in both the ground state and the electronically excited states are calculated using the TDDFT method, since the ultrafast hydrogen-bonding dynamics can be investigated by monitoring the vibrational absorption spectra of some hydrogen-bonded groups in different electronic states. We demonstrated that the intermolecular hydrogen bond C=O...H-O between fluorenone and methanol molecules is significantly strengthened in the electronically excited-state upon photoexcitation of the hydrogen-bonded FM-MeOH complex. The hydrogen bond strengthening in electronically excited states can be used to explain well all the spectral features of fluorenone chromophore in alcoholic solvents. Furthermore, the radiationless deactivation via internal conversion (IC) can be facilitated by the hydrogen bond strengthening in the excited state. At the same time, quantum yields of the excited-state deactivation via fluorescence are correspondingly decreased. Therefore, the total fluorescence of fluorenone in polar protic solvents can be drastically quenched by hydrogen bonding.  相似文献   

3.
Time-dependent density functional theory (TDDFT) method has been carried out to investigate excited-state hydrogen-bonding dynamics between 2-hydroxybenzonitrile (o-cyanophenol) and carbon monoxide. We have demonstrated that intermolecular hydrogen bond between 2-hydroxybenzonitrile (o-cyanophenol) and C=O group are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen-bonding groups in different electronic states. In this study, we firstly analyze frontier molecular orbitals (MOs). Our results are consistent with the intermolecular hydrogen bond strengthening in the electronically excited state of Coumarin 102 in alcoholic solvents, which has been demonstrated for the first time by Zhao and Han. Moreover, the calculated electronic excitation energies of the hydrogen bonding C=O and O–H groups are markedly red-shifted upon photoexcitation, which illustrates the hydrogen bonds strengthen in the electronically excited state again. And the geometric structures in both ground state and the S1 state of this hydrogen-bonded complex are calculated using the density functional theory (DFT) and TDDFT methods, respectively.  相似文献   

4.
In this work, the excited-state hydrogen bonding dynamics of photoexcited coumarin 102 in aqueous solvent is reconsidered. The electronically excited states of the hydrogen bonded complexes formed by coumarin 102 (C102) chromophore and the hydrogen donating water solvent have been investigated using the time-dependent density functional theory method. Two intermolecular hydrogen bonds between C102 and water molecules are considered. The previous works (Wells et al., J Phys Chem A 2008, 112, 2511) have proposed that one intermolecular hydrogen bond would be strengthened and the other one would be cleaved upon photoexcitation to the electronically excited states. However, our theoretical calculations have demonstrated that both the two intermolecular hydrogen bonds between C102 solute and H(2)O solvent molecules are significantly strengthened in electronically excited states by comparison with those in ground state. Hence, we have confirmed again that intermolecular hydrogen bonds between C102 chromophore and aqueous solvents are strengthened not cleaved upon electronic excitation, which is in accordance with Zhao's works.  相似文献   

5.
In the present work, the electronic excited-state hydrogen bonding dynamics of coumarin chromophore in alcohols is revisited. The time-dependent density functional theory (TDDFT) method has been performed to investigate the intermolecular hydrogen bonding between Coumarin 151 (C151) and methanol (MeOH) solvent in the electronic excited state. Three types of intermolecular hydrogen bonds can be formed in the hydrogen-bonded C151–(MeOH)3 complex. We have demonstrated again that intermolecular hydrogen bonds between C151 and methanol molecules can be significantly strengthened upon photoexcitation to the electronically excited state of C151 chromophore. Our results are consistent with the intermolecular hydrogen bond strengthening in the electronically excited state of Coumarin 102 in alcoholic solvents, which has been demonstrated for the first time by Zhao et al. At the same time, the electronic excited-state hydrogen bond cleavage mechanism of photoexcited coumarin chromophores in alcohols proposed in some other studies about the hydrogen bonding dynamics is undoubtedly excluded. Hence, we believe that the two contrary dynamic mechanisms for intermolecular hydrogen bonding in electronically excited states of coumarin chromophores in alcohols are clarified here.  相似文献   

6.
Solute-solvent intermolecular photoinduced electron transfer (ET) reaction was proposed to account for the drastic fluorescence quenching behaviors of oxazine 750 (OX750) chromophore in protic alcoholic solvents. According to our theoretical calculations for the hydrogen-bonded OX750-(alcohol)(n) complexes using the time-dependent density functional theory (TDDFT) method, we demonstrated that the ET reaction takes place from the alcoholic solvents to the chromophore and the intermolecular ET passing through the site-specific intermolecular hydrogen bonds exhibits an unambiguous site selectivity. In our motivated experiments of femtosecond time-resolved stimulated emission pumping fluorescence depletion spectroscopy (FS TR SEP FD), it could be noted that the ultrafast ET reaction takes place as fast as 200 fs. This ultrafast intermolecular photoinduced ET is much faster than the diffusive solvation process, and even significantly faster than the intramolecular vibrational redistribution (IVR) process of the OX750 chromophore. Therefore, the ultrafast intermolecular ET should be coupled with the hydrogen-bonding dynamics occurring in the sub-picosecond time domain. We theoretically demonstrated for the first time that the selected hydrogen bonds are transiently strengthened in the excited states for facilitating the ultrafast solute-solvent intermolecular ET reaction.  相似文献   

7.
The time‐dependent density functional theory (TDDFT) method has been carried out to investigate the excited‐state hydrogen‐bonding dynamics of 4‐aminophthalimide (4AP) in hydrogen‐donating water solvent. The infrared spectra of the hydrogen‐bonded solute?solvent complexes in electronically excited state have been calculated using the TDDFT method. We have demonstrated that the intermolecular hydrogen bond C? O···H? O and N? H···O? H in the hydrogen‐bonded 4AP?(H2O)2 trimer are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen‐bonding groups in different electronic states. The hydrogen bonds strengthening in the electronically excited state are confirmed because the calculated stretching vibrational modes of the hydrogen bonding C?O, amino N? H, and H? O groups are markedly red‐shifted upon photoexcitation. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electroniclly excited state of chromophores in hydrogen‐donating solvents exists in many other systems in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

8.
In this work, the intermolecular dihydrogen and hydrogen bonding interactions in electronically excited states of a 2-pyridone (2PY)–borane–trimethylamine (BTMA) cluster have been theoretically studied using time-dependent density functional theory method. Our computational results show that the S1 state of 2PY–BTMA cluster is a locally excited state, in which only 2PY moiety is electronically excited. The theoretical infrared (IR) spectra of the 2PY–BTMA cluster demonstrate that the N–H stretching vibrational mode is slightly blue-shifted upon the electronic excitation. Moreover, the computed IR spectrum of the 2PY–BTMA cluster exhibits no carbonyl character due to the extension of the C=O bond length in the S1 state. However, the N–H bond is shortened slightly upon photoexcitation. At the same time, the H···H and H···O distances are obviously lengthened in the S1 sate by comparison with those in ground state. In addition, the electron density of the carbonyl oxygen is diminished due to the electronic excitation. Consequently, the proton acceptor ability of carbonyl oxygen is decreased in the electronic excited state. As a result, it is demonstrated that the intermolecular dihydrogen and hydrogen bonds are significantly weakened in the electronically excited state.  相似文献   

9.
Steady-state fluorescence and time-resolved absorption measurements in pico- and femtosecond time domain have been used to investigate the dynamics of hydrogen bond in the excited singlet (S(1)) state of fluorenone in alcoholic solvents. A comparison of the features of the steady-state fluorescence spectra of fluorenone in various kinds of media demonstrates that two spectroscopically distinct forms of fluorenone in the S(1) state, namely the non-hydrogen-bonded (or free) molecule as well as the hydrogen-bonded complex, are responsible for the dual-fluorescence behavior of fluorenone in solutions of normal alcoholic solvents at room temperature (298 K). However, in 2,2,2-trifluoroethanol (TFE), a strong hydrogen bond donating solvent, emission from only the hydrogen-bonded complex is observed. Significant differences have also been observed in the temporal evolution of the absorption spectroscopic properties of the S(1) state of fluorenone in protic and aprotic solvents following photoexcitation using 400 nm laser pulses. An ultrafast component representing the solvent-induced vibrational energy relaxation (VER) process has been associated with the dynamics of the S(1) state of fluorenone in all kinds of solvents. However, in protic solvents, in addition to the VER process, further evolution of the spectroscopic and dynamical properties of the S(1) state have been observed because of repositioning of the hydrogen bonds around the carbonyl group. In normal alcohols, two different kinds of hydrogen-bonded complex of the fluorenone-alcohol system with different orientations of the hydrogen bond with respect to the carbonyl group and the molecular plane of fluorenone have been predicted. On the other hand, in TFE, formation of only one kind of hydrogen-bonded complex has been observed. These observations have been supported by theoretical calculations of the geometries of the hydrogen-bonded complexes in the ground and the excited states of fluorenone. Linear correlation between the lifetimes of the equilibration process occurring because of repositioning of the hydrogen bonds and Debye or longitudinal relaxation times of the normal alcoholic solvents establish the fact that, in weakly hydrogen bond donating solvents, the hydrogen bond dynamics can be described as merely a solvation process. Whereas, in TFE, hydrogen bond dynamics is better described by a process of conversion between two distinct excited states, namely, the non-hydrogen-bonded form and the hydrogen-bonded complex.  相似文献   

10.
Excited-state hydrogen-bonding dynamics of N-methylformamide (NMF) in water has been investigated by time-dependent density functional theory (TDDFT) method. The ground-state geometry optimizations were calculated by density functional theory (DFT) method, while the electronic transition energies and corresponding oscillation strengths of the low-lying electronically excited states of isolated NMF, water monomers and the hydrogen-bonded NMF-H 2 O were calculated by TDDFT method. According to Zhao's rule on the excited-state hydrogen bonding dynamics, our results demonstrate that the intermolecular hydrogen bond C=O···O-H is strengthened and weakened in different electronically excited states. The hydrogen bond strengthening and weakening in the electronically excited state plays an important role in the photophysics of NMF in solutions.  相似文献   

11.
The geometric structures and infrared (IR) spectra in the electronically excited state of a novel doubly hydrogen‐bonded complex formed by fluorenone and alcohols, which has been observed by IR spectra in experimental study, are investigated by the time‐dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in both ground state and the S1 state of this doubly hydrogen‐bonded FN‐2MeOH complex are calculated using the DFT and TDDFT methods, respectively. Two intermolecular hydrogen bonds are formed between FN and methanol molecules in the doubly hydrogen‐bonded FN‐2MeOH complex. Moreover, the formation of the second intermolecular hydrogen bond can make the first intermolecular hydrogen bond become slightly weak. Furthermore, it is confirmed that the spectral shoulder at around 1700 cm?1 observed in the IR spectra should be assigned as the doubly hydrogen‐bonded FN‐2MeOH complex from our calculated results. The electronic excited‐state hydrogen bonding dynamics is also studied by monitoring some vibraitonal modes related to the formation of hydrogen bonds in different electronic states. As a result, both the two intermolecular hydrogen bonds are significantly strengthened in the S1 state of the doubly hydrogen‐bonded FN‐2MeOH complex. The hydrogen bond strengthening in the electronically excited state is similar to the previous study on the singly hydrogen‐bonded FN‐MeOH complex and play important role on the photophysics of fluorenone in solutions. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

12.
The time-dependent density functional theory (TDDFT) method was performed to investigate the hydrogen-bonding dynamics of acetic acid (AA) hydrates in aqueous solution. For AA, it tends to be both active hydrogen acceptor and donor and denote double H-bonds as OA···HW and HA···OW, resulting in ring structure hydrates. The ground-state geometry optimizations and electronic transition energies and corresponding oscillation strengths of the low-lying electronically excited states for the isolated AA monomer and the hydrogen-bonded ring structure hydrates are calculated by the density functional theory and TDDFT methods, respectively. Different types of intermolecular hydrogen bonds are formed between one AA molecule and water molecules. According to Zhao’s rule on the excited-state hydrogen bonding dynamics, it can be found that the intermolecular hydrogen bonds OA···HW and HA···OW are strengthened in electronically excited states of the hydrogen-bonded ring structure hydrates, with the excitation energy of a related excited state being lowered and electronic spectral redshifts being induced. Moreover, the hydrogen bond strengthening in the electronically excited state is crucial to the photophysics and photochemistry of hydrates with AA in aqueous solution.  相似文献   

13.
The intermolecular dihydrogen bonding in the electronically excited states of the dihydrogen-bonded phenol-BTMA complex in gas phase was theoretically investigated using the time-dependent density functional theory method for the first time. It was theoretically demonstrated that the S(1) state of the dihydrogen-bonded phenol-BTMA complex is a locally excited state, in which only the phenol moiety is electronically excited. The infrared spectra of the dihydrogen-bonded phenol-BTMA complex in ground state and the S(1) state were calculated at both the O-H and B-H stretching vibrational regions. A novel infrared spectrum of the dihydrogen-bonded phenol-BTMA complex in the electronically excited state was found. The stretching vibrational absorption bands of the dihydrogen-bonded O-H and B-H groups are very strong in the ground state, while they are disappeared in the S(1) state. At the same time, a new strong absorption band appears at the C[Double Bond]O stretching region. From the calculated bond lengths, it was found that both the O-H and B-H bonds in the dihydrogen bond O-H...H-B are significantly lengthened in the S(1) state of the dihydrogen-bonded phenol-BTMA complex. However, the C-O bond in the phenol moiety is markedly shortened in the excited state, and then has the characteristics of C[Double Bond]O group. Furthermore, it was demonstrated that the intermolecular dihydrogen bonds in the electronically excited state of the dihydrogen-bonded phenol-BTMA complex are strengthened, since calculated H...H distance is drastically shortened in the S(1) state.  相似文献   

14.
15.
Time-dependent density functional theory (TD-DFT) method was used to study the excited-state hydrogen bonding of three esculetin complexes formed with aprotic solvents. The geometric structures, molecular orbitals (MOs), electronic spectra and the infrared (IR) spectra of the three doubly hydrogen-bonded complexes formed by esculetin and aprotic solvents dimethylsulfoxide (DMSO), tetrahyrofuran (THF) and acetonitrile (ACN) in both ground state S(0) and the first singlet excited state S(1) were calculated by the combined DFT and TD-DFT methods with the COSMO solvation model. Two intermolecular hydrogen bonds can be formed between esculetin and the aprotic solvent in each hydrogen-bonded complex. Based on the calculated bond lengths of the hydrogen bonds and the groups involved in the formation of the intermolecular hydrogen bonds in different electronic states, it is demonstrated that one of the two hydrogen bonds formed in each hydrogen-bonded complex is strengthened while the other one is weakened upon photoexcitation. Furthermore, it is found that the strength of the intermolecular hydrogen bonds formed in the three complexes becomes weaker as the solvents change from DMSO, via THF, to ACN, which is suggested to be due to the decrease of the hydrogen bond accepting (HBA) ability of the solvents. The spectral shifts of the calculated IR spectra further confirm the strengthening and weakening of the intermolecular hydrogen bonds upon the electronic excitation. The variations of the intermolecular hydrogen bond strengths in both S(0) and S(1) states are proposed to be the main reasons for the gradual spectral shifts in the absorption and fluorescence spectra both theoretically and experimentally.  相似文献   

16.
The time-dependent density functional theory (TDDFT) method has been carried out to study the hydrogen-bonding of fluorenone (FN) and FN derivatives (FODs) in hydrogen-donating methanol solvent. The ground-state geometry structure optimizations, electronic excitation energies and corresponding oscillation strengths of the low-lying electronically excited states for the isolated FN, FODs and methanol monomers and their corresponding complexes have been calculated using DFT and TDDFT methods respectively. Comparing FODs with FN, we have obtained the strength change of the hydrogen bonds and the electronic spectral shift in different excited states. At the same time, the nature of the FODs in the electronic excited states and the influence of the different substituent group have been summed up.  相似文献   

17.
Dynamics of the excited singlet (both the S2 and S1) states of a ketocyanine dye, namely, 2,5-bis[(2,3-dihydroindolyl)-propylene]-cyclopentanone (KCD), have been investigated in different kinds of media using steady-state absorption and emission as well as femtosecond transient absorption spectroscopic techniques. Steady-state fluorescence measurements, following photoexcitation of KCD to its second excited singlet state, reveal dual fluorescence (emission from both the S2 and S1 states) behavior. Although the intensity of the S2 --> S0 fluorescence is weaker than that of the S1 --> S0 fluorescence in solutions at room temperature (298 K), the former becomes as much as or more intense than the latter in rigid matrixes at 77 K. The lifetime of the S2 state is short and varies between 0.2 and 0.6 ps in different solvents. After its creation, the S2 state undergoes two simultaneous processes, namely, S2 --> S0 fluorescence and S2 --> S1 internal conversion. Time-resolved measurements reveal the presence of an ultrafast component in the decay dynamics of the S1 state. A good correlation between the lifetime of this component and the longitudinal relaxation times (tauL) of the solvents suggests that this component arises due to solvation in polar solvents. More significant evolution of the spectroscopic properties of the S1 state in alcoholic solvents in the ultrafast time domain has been explained by the occurrence of the repositioning of the hydrogen bonds around the carbonyl group in the excited state of KCD. In 2,2,2-trifluoroethanol, a strongly hydrogen bond donating solvent, it has even been possible to establish the existence of two distinct forms of the S1 state, namely, the non-hydrogen-bonded (or free) molecule and the hydrogen-bonded complex.  相似文献   

18.
Ultrafast relaxation dynamics of the excited singlet (S(1)) state of Michler's ketone (MK) has been investigated in different kinds of solvents using a time-resolved absorption spectroscopic technique with 120 fs time resolution. This technique reveals that conversion of the locally excited (LE) state to the twisted intramolecular charge transfer (TICT) state because of twisting of the N,N-dimethylanilino groups with respect to the central carbonyl group is the major relaxation process responsible for the multi-exponential and probe-wavelength-dependent transient absorption dynamics of the S1 state of MK, but solvation dynamics does not have a significant role in this process. Theoretical optimization of the ground-state geometry of MK shows that the dimethylanilino groups attached to the central carbonyl group are at a dihedral angle of about 51 degrees with respect to each other because of steric interaction between the phenyl rings. Following photoexcitation of MK to its S1 state, two kinds of twisting motions have been resolved. Immediately after photoexcitation, an ultrafast "anti-twisting" motion of the dimethylanilino groups brings back the pretwisted molecule to a near-planar geometry with high mesomeric interaction and intramolecular charge transfer (ICT) character. This motion is observed in all kinds of solvents. Additionally, in solvents of large polarity, the dimethylamino groups undergo further twisting to about 90 degrees with respect to the phenyl ring, to which it is attached, leading to the conversion of the ICT state to the TICT state. Similar characteristics of the absorption spectra of the TICT state and the anion radical of MK establish the nearly pure electron transfer (ET) character of the TICT state. In aprotic solvents, because of the steep slope of the potential energy surface near the Franck-Condon (FC) or LE state region, the LE state is nearly nonemissive at room temperature and fluorescence emission is observed from only the ICT and TICT states. Alternatively, in protic solvents, because of an intermolecular hydrogen-bonding interaction between MK and the solvent, the LE region is more flat and stimulated emission from this state is also observed. However, a stronger hydrogen-bonding interaction between the TICT state and the solvent as well as the closeness between the two potential energy surfaces due to the TICT and the ground states cause the nonradiative coupling between these states to be very effective and, hence, cause the TICT state to be weakly emissive. The multi-exponentiality and strong wavelength-dependence of the kinetics of the relaxation process taking place in the S1 state of MK have arisen for several reasons, such as strong overlapping of transient absorption and stimulated emission spectra of the LE, ICT, and TICT states, which are formed consecutively following photoexcitation of the molecule, as well as the fact that different probe wavelengths monitor different regions of the potential energy surface representing the twisting motion of the excited molecule.  相似文献   

19.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

20.
Relaxation dynamics of the excited singlet states of 2,5-bis-(N-methyl-N-1,3-propdienylaniline)-cyclopentanone (MPAC), a ketocyanine dye, have been investigated using steady-state absorption and emission as well as femtosecond time-resolved absorption spectroscopic techniques. Following photoexcitation using 400 nm light, the molecule is excited to the S2 state, which is fluorescent in rigid matrices at 77 K. S2 state is nearly non-fluorescent in solution and has a very short lifetime (0.5 ± 0.2 ps). In polar aprotic solvents, the S1 state follows a complex multi-exponential relaxation dynamics consisting of torsional motion of the donor groups, solvent re-organization as well as photoisomerization processes. However, in alcoholic solvents, solvent re-organization via intermolecular hydrogen-bonding interaction is the only relaxation process observed in the S1 state. In trifluoroethanol, a strong hydrogen bonding solvent, conversion of the non-hydrogen-bonded form, which is formed following photoexcitation, to the hydrogen-bonded complex has been clearly evident in the relaxation process of the S1 state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号