首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymorphism and thermal decomposition of [Mg(DMSO)6](NO3)2, where DMSO =(CH3)2SO, were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). The gaseous products of the decomposition were on-line identified by a quadruple mass spectrometer (QMS). Three phase transitions have been detected for this compound in the temperature range of 95–370 K between the following solid phases: stable KIb↔stable KIa at T C3=195 K, metastable KII↔supercooled K0 at T C2=230 K and stable KIa→stable K0 at T C1=337 K. Thermal decomposition of the title compound proceeds in three main stages. In the first stage, which starts just above ca. 380 K, and is continued up to ca. 540 K, the compound loses in two steps four DMSO molecules per one formula unit and undergoes into [Mg(DMSO)2](NO3)2. The second stage starts just immediately after liberating four DMSO ligands and is connected with the decomposition of [Mg(DMSO)2](NO3)2 and the formation of a mixture of solid anhydrous magnesium sulfate, magnesium nitrate and magnesium oxide and also a mixture of gaseous products of the DMSO and Mg(NO3)2 decomposition. The third and the last stage corresponds to the decomposition of not decomposed yet magnesium nitrate and formation of magnesium oxide, nitrogen oxides and oxygen.  相似文献   

2.
[Mn(NH3)6](NO3)2 crystallizes in the cubic, fluorite (C1) type crystal lattice structure (Fm \( \overline{3} \) m) with a = 11.0056 Å and Z = 4. Two phase transitions of the first-order type were detected. The first registered on DSC curves as a large anomaly at T C1 h  = 207.8 K and T C1 c  = 207.2 K, and the second registered as a smaller anomaly at T C2 h  = 184.4 K and T C2 c  = 160.8 K (where the upper indexes h and c denote heating and cooling of the sample, respectively). The temperature dependence of the full width at half maximum of the band associated with the δs(HNH)F1u mode suggests that the NH3 ligands in the high temperature and intermediate phase reorientate quickly with correlation times in the order of several picoseconds and with activation energy of 9.9 kJ mol?1. In the phase transition at T C2 c probably only a some of the NH3 ligands stop their reorientation, while the remainders continue to reorientate quickly with activation energy of 7.7 kJ mol?1. Thermal decomposition of the investigated compound starts at 305 K and continues up to 525 K in four main stages (I–IV). In stage I, 2/6 of all NH3 ligands were seceded. Stages II and III are connected with an abruption of the next 2/6 and 1/6 of total NH3, respectively, and [Mn(NH3)](NO3)2 is formed. The last molecule of NH3 per formula unit is freed at stage IV together with the simultaneous thermal decomposition of the resulting Mn(NO3)2 leading to the formation of gaseous products (O2, H2O, N2 and nitrogen oxides) and solid MnO2.  相似文献   

3.
Four complex salts with the polyatomic [Rh(NH3)6]3+ cation are synthesized and studied by X-ray diffraction. The crystallographic characteristics of [Rh(NH3)6](WO4)Cl are determined and the structures of [Rh(NH3)6]Cl3, [Rh(NH3)6](ReO4)3·2H2O, and [Rh(NH3)6](MoO4)Cl·3H2O are solved. The features of mutual packing of the fragments are studied.  相似文献   

4.
The thermal decomposition of gallium nitrate hydrate (Ga(NO3)3·xH2O) to gallium oxide has been studied by TG/DTG and DSC measurements performed at different heating rates. It is concluded that 8 water molecules are present in the hydrate compound. The anhydrous gallium nitrate does not form at any temperature as the reaction consists of coupled dehydration/decomposition processes that occur with a mechanism dependent on heating rate. TG measurements performed with isothermal steps (between 31 and 115°C) indicate that Ga(OH)2NO3 forms in the first stage of the reaction. Such a compound undergoes further decomposition to Ga(OH)3 and Ga(NO3)O, compounds that then decompose respectively to Ga(OH)O and finally to Ga2O3 and directly to Ga2O3. Diffuse reflectance Fourier transform IR spectroscopy (DRIFTIR) has been of help in assessing that the reaction consists of parallel dehydration/decomposition processes.  相似文献   

5.
The compound [Ni(NH3)6][VO(O2)2(NH3)]2 was prepared and characterized by elemental analysis and vibrational spectra. The single crystal X-ray study revealed that the structure consists of [Ni(NH3)6]2+ and [VO(O2)2(NH3)] ions. As a result of weak interionic interactions V′···Op (Op-peroxo oxygen), ([VO(O2)2(NH3)])2 dimers are formed in the solid-state. The thermal decomposition of [Ni(NH3)6][VO(O2)2(NH3)]2 is a multi-step process with overlapped individual steps; no defined intermediates were obtained. The final solid products of thermal decomposition up to 600°C were Ni2V2O7 and V2O5.  相似文献   

6.
The thermal decompositions of polycrystalline samples of [Ni(NH3)6](NO3)2 were studied by thermogravimetric analysis with simultaneous gaseous products of the decomposition identified by a quadruple mass spectrometer. Two measurements were made for samples placed in alumina crucibles, heated from 303 K up to 773 K in the flow (80 cm3 min?1) of Ar 6.0 and He 5.0, at a constant heating rate of 10 K min?1. Thermal decomposition process undergoes two main stages. First, the deamination of [Ni(NH3)6](NO3)2 to [Ni(NH3)2](NO3)2 occurs in four steps, and 4NH3 molecules per formula unit are liberated. Then, decomposition of survivor [Ni(NH3)2](NO3)2 undergoes directly to the final decomposition products: NiO1+x, N2, O2, nitrogen oxides and H2O, without the formation of a stable Ni(NO3)2, because of the autocatalytic effect of the formed NiO1+x. Obtained results were compared both with those published by us earlier, by Farhadi and Roostaei-Zaniyani later and also with the results published by Rejitha et al. quite recently. In contradiction to these last ones, in the first and second cases agreement between the results was obtained.  相似文献   

7.
The crystal structure of bis(semicarbazido)copper(II) nitrate [Cu(NH2NHC(O)NH2)2](NO3)2 has been studied by X-ray diffraction. Monoclinic crystals, a = 6.835(2) Å, b = 7.733(2) Å, c = 10.320(3) Å, β = 105.701(3)°, V = 525.1(2) Å3, space group P21/c, Z = 2, d msd = 2.136 g/cm3, μ(MoK α) = 2.143 mm−1. The structure was solved with the program for automatic analysis of Patterson’s function and refined by full-matrix least squares in an anisotropic approximation for all non-hydrogen atoms using 753 independent reflections; R 1 = 0.0203. The square environment of the Cu atom is formed from the amino nitrogen atoms of the hydrazine fragments and the C=O oxygen atoms of the two semicarbazide bidentate molecules (Cu-N 1.928 Å, Cu-O 1.999 Å). The axial positions are occupied by the O atoms of the NO 3 outer-spheric anions (Cu-O 2.505 Å). In the structure, the complex cations and the NO 3 anions are linked into a framework by N-H...O type hydrogen bonds. Original Russian Text Copyright ? 2007 by G. V. Romanenko, Z. A. Savelieva, and S. V. Larionov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 48, No. 2, pp. 370–373, March–April, 2007.  相似文献   

8.
The complex [Co(2-Me-Pyz)2(H2O)4](NO3)2 is synthesized and its structure is determined. The crystals are monoclinic: space group P21/n, a = 10.685(2) Å, b = 6.837(1), c = 12.515(3) Å, β = 91.84(3)°, V = 913.8(3) Å3, ρcalcd = 1.042 g/cm 3, Z = 2. The Co2+ ion (in the inversion center) is coordinated at the vertices of the distorted octahedron by two nitrogen atoms of methylpyrazine and four oxygen atoms of the water molecules (Co(1)–N(1) 2.180(3), average Co(1)–O(w) 2.079(3) Å, angles at the Co atom 87.9(1)–92.1(1)°). Supramolecular pseudometallocycles are formed in the structure through the O(w)–H…N(1) hydrogen bonds between the coordinated H2O molecules and the terminal nitrogen atoms of the 2-methylpyrazine molecules. Their interaction results in the formation of supramolecular layers joined by the NO3 groups into a three-dimensional framework.  相似文献   

9.
The monoclinic modification of [Cu(NH3)4](ReO4)2 complex salt in the range 100-410 K is studied by single crystal X-ray diffraction. The crystallographic data for 300 K are as follows: a = 10.6123(3) Å, b = 7.5443(2) Å, c = 15.2261(4) Å, β = 108.406(1)°, V = 1156.67(5) Å3, space group Р21/n, Z = 4, dx = 3.623 g/cm3. The coordination environment of the Cu atom, being a distorted square formed by four nitrogen atoms with Cu–N of 1.997-2.018 Å, is completed by the contacts with two oxygen atoms Cu…O of 2.472 Å and 2.598 Å. The comparative crystal chemical analysis with the triclinic modification of [Cu(NH3)4](ReO4)2 known in the literature is performed.  相似文献   

10.
Ammonium trinitratouranylate NH4[UO2(NO3)3] (I) single crystals have been synthesized by the reaction of aqueous solutions of diaquadinitratouranyl tetrahydrate and ammonium nitrate in the presence of nitric acid. The structure of the complex has been studied by X-ray diffraction analysis: space group \(R\bar 3c\), a = 9.361(2), c = 18.883(4) Å; V = 1433.0(5) Å3, and Z = 6. The structural units of the NH4[UO2(NO3)3] crystal—NH 4 + cations and [UO2(NO3)3]? complex anions with three bidentate cyclic nitrato groups—are on crystallographic axes \(\bar 3\). A complex three-dimensional packing arranged by the electrostatic attraction forces between counterions and the N-H...O hydrogen bonds between ammonium cations and trinitratouranylate anions is realized in the structure. X-ray diffraction analysis results are confirmed by IR spectra of NH4[UO2(NO3)3].  相似文献   

11.
The nitrosation of [Ru(NH3)6]2+ in hydrochloric acid and alkaline ammonia media has been studied; the patterns of interconversion of ruthenium complexes in reaction solutions have been proposed. In both cases, nitrogen(II) oxide acts as the nitrosation agent. The procedure for the synthesis of [Ru(NO)(NH3)5]Cl3 · H2O (yield 75–80%), the main nitrosation product of [Ru(NH3)6]2+, has been optimized. Thermolysis of [Ru(NO)(NH3)5]Cl3 · H2O in a helium atmosphere has been studied; the intermediates have been identified. One of these products is polyamidodichloronitrosoruthenium(II) whose subsequent decomposition gives an equimolar mixture of ruthenium metal and dioxide. The structure of trans-[RuNO(NH3)4Cl]Cl2, formed in the second stage of thermolysis and as a by-product in the nitrosation of [Ru(NH3)6]Cl2, has been determined by X-ray diffraction.  相似文献   

12.
The novel high nitrogen‐containing energetic complex [Cd(DAT)6](NO3)2 was synthesized by reaction of Cd(NO3)2·6H2O with 1,5‐diamino‐tetrazole (DAT). It was characterized by elemental analysis, FT‐IR spectroscopy and single‐crystal X‐ray diffraction analysis. The central Cd2+ ion is coordinated by six nitrogen atoms from six DAT ligand molecules to form a hexacoordinate distorted octahedral compound. The [Cd(DAT)6](NO3)2 molecules are linked together through two types of hydrogen bonds thus forming a stable three‐dimensional net structure. The thermal decomposition mechanism of [Cd(DAT)6](NO3)2 was investigated by DSC and TG/DTG analyses and FT‐IR spectroscopy. The kinetic parameters of the exothermic process were studied by using Kissinger’s and OzawaDoyle’s methods.  相似文献   

13.
The crystal structure of [Co(NH3)6](WO4)Cl complex salt is determined by single crystal X-ray. The thermal properties are examined, and the products obtained on heating the salt in different gaseous atmospheres are analyzed by powder X-ray diffraction.  相似文献   

14.
Dissolution of vanadium in anhydrous HNO3 followed by exposure of the solution in a dessicator over P2O5 gave liquid vanadyl trinitrate (I). The X-ray diffraction analysis of I was carried out for a single crystal grown on cooling the liquid in a sealed capillary. The structure is composed of VO(NO)3 molecules in which the V atom has an unusually high C.N. 7; it coordinates the terminal O atom and three bidentate nitrate groups to form a distorted pentagonal bipyramid as the coordination polyhedron with the terminal O atom occupying one axial vertex. Using the GAMESS program package, ab initio calculation of the structure of VO (NO3)3 in the liquid phase was carried out. It was shown that in all three physical states, vanadyl trinitrate retains its molecular structure almost invariable. Toluene and naphthalene nitration using I and (NO2)[Fe(NO3)4], NO[Cu(NO3)3], (NO)3/4(NO2)1/4[Zr(NO3)5], and MoO2(NO3)2 proceeds at high rates at low temperatures to give an unusually high para-nitrotoluene percentage in the products as compared with the ortho-isomer. The activity of the studied compounds in the nitration of naphthalene decreases in the series VO(NO3)3 > (NO)3/4(NO2)1/4[Zr(NO3)5] > MoO2(NO3)2.  相似文献   

15.
Chemical, derivatographic, IR spectral, and X-ray diffraction analyses were used to study thermal transformations in the system CO(NH2)2-H3PO4 and in the same system with addition of KNO3, CsNO3, LiNO3 · 3H2O, and NH4NO3 salts in the temperature range 20–600°C. The influence of the chosen nitrate compounds on the process of reorganization of the constituent ingredients, evolution of nitrogen into the gas phase, yield of the solid residue, and preservation of nitrogen and phosphorus was revealed.  相似文献   

16.
The crystal structures of compounds from the series [M(NH3)5Cl](NO3)2, (M = Ir, Rh, Ru) were described. The compounds crystallized in the tetragonal crystal system, space group I4, Z = 2. Crystal data for [Ir(NH3)5Cl](NO3)2 (I): a = 7.6061(1) Å, b = 7.6061(1) Å, c = 10.4039(2) Å, V = 601.894(16) Å3, ρcalc = 2.410 g/cm3, R = 0.0087; [Rh(NH3)5Cl](NO3)2 (II): a = 7.5858(5) Å, b = 7.5858(5) Å, c = 10.41357(7) Å, V = 599.24(7) Å3, ρcalc = 1.926 g/cm3, R = 0.0255; [Ru(NH3)5Cl](NO3)2 (III): a = 7.5811(6) Å, b = 7.5811(6) Å, c = 10.5352(14) Å, V = 605.49(11) Å3, ρcalc = 1.896 g/cm3, R = 0.0266. The compounds were defined by IR spectroscopy and XRPA and thermal analyses.  相似文献   

17.
The reaction of 3,6-di-(3-methyl-pyridin-2-yI)-s-tetrazine (DMPTZ, II) with CeIII salt [Ce(NO3)3 · 6H2O] generates a new ligand, N-(3-methyl-pyridin-2-yl)-formimidoyl-(3-methyl-pyridin-2-yl) hydrazone (L), and forms a new complex: a mononuclear complex [Ce(L)(NO3)2 (H2O)3] · NO3 (III). Crystal data for III: space group P-1, with a = 0.7133(4) nm, b = 1.1139(2) nm, c = 1.4572(3) nm, α= 102.13(2)°, β= 99.81(3)°, γ= 91.10(3)°, Z = 2, V = 1113.6(7) nm3, μ = 2.123 mm−1 and F(000) = 630. L acts as a tri-dentate chelating ligand in III. There are 10 coordination sites around Ce3+ of III, which are respectively occupied by seven oxygen atoms (four from two nitrate anions and three from three H2O molecules) and three nitrogen atoms (all from L). The cerium atom and three chelating nitrogen atoms are coplanar. The mechanism of the metal assisted decomposition is discussed briefly.  相似文献   

18.
Charges on the atoms and structural parameters of the Xe(CF3)2, FXeCF3, and XeF2 molecules were calculated by the MP2(full)/MIDI(d6)&6-311G(d 6) quantum-chemical methods. The calculated energy of Xe(CF3)2 is greater by 113 kcal/mol than the overall energy of C2F6 and Xe, and the energy of FXeCF3 is greater by 108 kcal/mol than the overall energy of CF4 and Xe, the barrier to the decomposition being estimated at 40 kcal/mol. Both Xe(CF3)2 and FXeCF3 molecules are stable with respect to spontaneous decomposition with elimination of difluorocarbene.__________Translated from Zhurnal Organicheskoi Khimii, Vol. 40, No. 12, 2004, pp. 1808–1810.Original Russian Text Copyright © 2004 by Semenov, Sigolaev.  相似文献   

19.
The CuO-CeO2/Al2O3 catalysts for the selective oxidation of CO in hydrogen-containing mixtures were prepared by surface self-propagating thermal synthesis (SSTS) with the use of cerium nitrate Ce(NO3)3, the ammonia complex of copper acetate [Cu(NH3)4](CH3COO)2, and citric acid C6H8O7 as a fuel additive. The effect of the C6H8O7/Ce(NO3)3 molar ratio on the catalyst activity and selectivity for oxygen was studied. The catalyst samples were studied by X-ray diffraction (XRD) analysis, temperature-programmed reduction (TPR-H2), IR spectroscopy of adsorbed CO, and transmission electron microscopy (TEM). It was found that an increase in the C6H8O7/Ce(NO3)3 ratio resulted in an increase in the degree of dispersion of the resulting CeO2 phase. The greatest amount of dispersed CuO particles, which are responsible for catalytic activity in the oxidation of CO, was formed at C6H8O7/Ce(NO3)3 = 1.  相似文献   

20.
Cerium dioxide as a component of CuO-ZnO-CeO2/Al2O3/cordierite catalysts stabilizes their action in the decomposition of methanol by preventing carbon deposition on the surface and facilitating hydrogen formation with selectivity and yield in the range 85–96%. The optimal indices for this reaction are obtained for a CeO2-CuO/Al2O3/cordierite sample prepared using an ammonium precursor for cerium, (NH4)2Ce(NO3)6. This catalyst displays enhanced reductive capacity relative to the analogous CeO2-CuO composition prepared using Ce(NO3)3·6H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号