首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
《Fluid Phase Equilibria》2005,238(2):254-261
The group contribution SAFT approach developed for pure compounds in an earlier work [S. Tamouza, J.-P. Passarello, J.-C. de Hemptinne, P. Tobaly, Fluid Phase Eq. 222–223 (2004) 67] is here extended for the treatment of ester series. Parameters for groups CH2 and CH3 previously determined were reused for the alkyl chains while new parameters were determined for COO and HCOO groups. The polarity of these molecules was taken into account by the addition to the equation of state (EOS) of a dipole–dipole interaction term due to Gubbins and Twu [K.E. Gubbins, C.H. Twu, Chem. Eng. Sci. 33 (1978) 863]. This term requires an additional parameter, the dipole moment which was correlated to the COO chemical group position in the ester chain.Three different versions of SAFT were used here to test the validity of the method: the original SAFT [W.G. Chapman, G. Jackson, K.E. Gubbins, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 1709], VR-SAFT [A. Gil-Villegas, A. Galindo, P.J. Whitehead, S.J. Mills, G. Jackson, A.N. Burgess, J. Chem. Phys. 106 (1997) 4168] and PC-SAFT [J. Gross, G. Sadowski, Fluid Phase Eq. 168 (2000) 183; J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40 (2001) 1244]. In all three cases, similar and encouraging results are obtained. Reasonable predictions are found on heavy esters that were not included in the regression database.  相似文献   

2.
The perturbed-chain statistical associating fluid theory (PC-SAFT) is studied for a wide range of temperature, T, pressure, p, and (effective) chain length, m, to establish the generic phase diagram of polymers according to this theory. In addition to the expected gas-liquid coexistence, two additional phase separations are found, termed "gas-gas" equilibrium (at very low densities) and "liquid-liquid" equilibrium (at densities where the system is expected to be solid already). These phase separations imply that in one-component polymer systems three critical points occur, as well as equilibria of three fluid phases at triple points. However, Monte Carlo simulations of the corresponding system yield no trace of the gas-gas and liquid-liquid equilibria, and we conclude that the latter are just artefacts of the PC-SAFT approach. Using PC-SAFT to correlate data for polybutadiene melts, we suggest that discrepancies in modelling the polymer density at ambient temperature and high pressure can be related to the presumably artificial liquid-liquid phase separation at lower temperatures. Thus, particular care is needed in engineering applications of the PC-SAFT theory that aims at predicting properties of macromolecular materials.  相似文献   

3.
We build on methods combining a short-range density functional approximation with a long-range random phase approximation [B. G. Janesko, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. 130, 081105 (2009)] or second-order screened exchange [J. Paier et al., J. Chem. Phys. 132, 094103 (2010)] by replacing the range-separated local density approximation functional with a range-separated generalized gradient approximation functional in the short range. We present benchmark results that show a marked improvement in the thermodynamic tests over the previous local density approximation-based methods while retaining those methods' excellent performance in van der Waals interactions.  相似文献   

4.
The behavior of a polymer chain immersed in a binary solvent mixture is investigated via a single-polymer simulation using an effective Hamiltonian, where the solvent effects are taken into account through a density-functional theory for polymer-solvent admixtures. The liquid-liquid phase separation of the binary solvent mixture is modeled as that of a Lennard-Jones binary fluid mixture with weakly attractive interactions between the different components. Two types of energetic preferences of the polymer chain for the better solvent-(A) no preferential solvophilicity and (B) strong preferential solvophilicity-are employed as polymer-solvent interaction models. The radius of gyration and the polymer-solvent radial distribution functions are determined from the simulations of various molar fractions along an isotherm slightly above the critical temperature of the liquid-liquid phase separation. These quantities near the critical point conspicuously depend on the strength of the preferential solvophilicity. In the case where the polymer exhibits a strong preferential solvophilicity, a remarkable expansion of the polymer chain is observed near the critical point. On the other hand, in the case where the polymer has no preferential solvophilicity, no characteristic variation of the polymer conformation is observed even near the critical point. These results indicate that the expansion of a polymer chain enhances the local phase separation around it, acting as a nucleus of demixing in the vicinity of the critical point. This phenomenon in binary solvents near the liquid-liquid critical point is similar to the expansion of the polymer chain in one-component supercritical solvents near the liquid-vapor critical point, which we have reported [T. Sumi and H. Sekino J. Chem. Phys. 122, 194910 (2005)].  相似文献   

5.
We present phase diagrams of a model bidisperse ferrocolloid consisting of a binary mixture of dipolar hard spheres (DHSs) under the influence of an external magnetic field. The dipole moments of the particles are chosen proportional to the particle volume to mimic real ferrocolloids, and we focus on dipole-dominated systems where isotropic attractive interactions are absent. Our results are based on density-functional theory in the modified mean-field (MMF) approximation. For one-component DHS fluids in external fields, and for corresponding mixtures dominated by one of the components, MMF theory predicts the tricritical point of the transition between an isotropic gas and a ferromagnetic liquid occurring at zero field to be changed into a critical point separating two magnetically ordered phases of different density. The corresponding critical temperature displays a nonmonotonic dependence on the field strength. Completely different behavior is found for the critical temperature related to the demixing phase transitions appearing in strongly asymmetric mixtures [G. M. Range and S. H. L. Klapp, Phys. Rev. E 70, 061407 (2004)]. For such systems, we find a monotonic decrease of the demixing critical temperature with increasing field. The field strength dependence of the critical temperature can therefore be tuned between nonmonotonic and monotonic behaviors just by changing the composition of the mixture--e.g., by adjusting the chemical potentials. This allows us to efficiently control the influence of external magnetic fields on the phase behavior over a large temperature interval.  相似文献   

6.
Using the reference hypernetted chain (RHNC) integral equation theory and an accompanying stability analysis we investigate the structural and phase behaviors of model bidisperse ferrocolloids based on correlations of the homogeneous isotropic high-temperature phase. Our model consists of two species of dipolar hard spheres (DHSs) which dipole moments are proportional to the particle volume. At small packing fractions our results indicate the onset of chain formation, where the (more strongly coupled) A species behaves essentially as a one-component DHS fluid in a background of B particles. At high packing fractions, on the other hand, the RHNC theory indicates the appearance of isotropic-to-ferromagnetic transitions (volume ratios close to one) and demixing transitions (smaller volume ratios). However, contrary with the related case of monodisperse DHS mixtures previously studied by us [Phys. Rev. E 70, 031201 (2004)], none of the present bidisperse systems exhibit demixing within the isotropic phase, rather we observe coupled ferromagnetic/demixing phase transitions.  相似文献   

7.
8.
The electrode electrolyte interface is modelled by a mixture of charged and dipolar hard spheres against a planar, charged hard wall. A mean field theory is used to describe the coulombic interactions while steric effects are given by the Percus–Yevick theory. The underlying Percus–Yevick theory for three uncharged species against a planar wall is derived by using the standard method developed by Henderson et al. (D. Henderson, F.F. Abraham, J.A. Barker, Mol. Phys., 31 (1976) 1291) and compared with Monte-Carlo simulations. Although the Percus–Yevick theory has shortcomings, the theory provides an estimate of how the high density of the solvent influences the structural and thermodynamic properties. Consideration of the solvent molecules introduces oscillations in the density distribution of the ions and solvent while the different molecular sizes and ion valences lead to an asymmetry in the differential capacitance.  相似文献   

9.
10.
Liquid-liquid and liquid-vapor coexistence regions of various water models were determined by Monte Carlo (MC) simulations of isotherms of density fluctuation-restricted systems and by Gibbs ensemble MC simulations. All studied water models show multiple liquid-liquid phase transitions in the supercooled region: we observe two transitions of the TIP4P, TIP5P, and SPCE models and three transitions of the ST2 model. The location of these phase transitions with respect to the liquid-vapor coexistence curve and the glass temperature is highly sensitive to the water model and its implementation. We suggest that the apparent thermodynamic singularity of real liquid water in the supercooled region at about 228 K is caused by an approach to the spinodal of the first (lowest density) liquid-liquid phase transition. The well-known density maximum of liquid water at 277 K is related to the second liquid-liquid phase transition, which is located at positive pressures with a critical point close to the maximum. A possible order parameter and the universality class of liquid-liquid phase transitions in one-component fluids are discussed.  相似文献   

11.
The second-order integral-equation formalism of [Attard J. Chem. Phys. 91, 3072 (1989); 95, 4471 (1991)], applied previously to one-component hard spheres and Lennard-Jones fluids, as well as to their mixtures, is used to binary Widom-Rowlinson mixtures. Comparison with Monte Carlo simulations of the pair correlation functions and of the demixing phase diagram shows that this method is also quite accurate in the case of highly nonadditive mixtures. Moreover, the results of the second-order theory are compared with previous theoretical predictions. Our interest is also in the calculation of the bridge functions, i.e., parts of the radial distribution functions either not included or simply approximated in the usual theories.  相似文献   

12.
The fluid phase equilibrium of the Stockmayer fluid is investigated using a thermodynamic perturbation theory approach. The reference and the perturbation potential are the Lennard–Jones potential and the dipolar–dipolar interactions, respectively. They are assumed to be represented by the modified Benedict–Webb–Rubin equation of state [J.K. Johnson, J.A. Zollweg, K.E. Gubbins, Mol. Phys. 78 (1993) 591–618] and the Padé approximant [G. Stell, J.C. Rasaiah, H. Narang, Mol. Phys. 27 (1974) 1393–1414], respectively. The asymmetry found in an analogous study [M.E. van Leeuwen, B. Smit, E.M. Hendriks, Mol. Phys. 78 (1993) 271–283] based on the BWR equation of state [J.J. Nicolas, K.E. Gubbins, W.B. Streett, D.J. Tildesley, Mol. Phys. 37 (1979) 1429–1454] is now not observed on the vapour–liquid equilibrium coexistence curves of Stockmayer fluids with dipolar strength of μ*2 = 1, 2, 3, and 4. Results agree with computer simulations for dipolar strength of μ*2 = 1; however as strength dipole increases, liquid densities are over-estimated.  相似文献   

13.
We describe a density functional theory for the restricted primitive model of ionic fluid at a charged wall with active sites to which ions can bond. The theory is an extension of our recent approach [Pizio et al., J. Chem. Phys. 121, 11957 (2004)] and is focused in the effects of specific adsorption of ions on the wall, besides the electrostatic phenomena. In order to solve the problem, we use the first-order thermodynamic perturbation theory of chemical association developed by Wertheim [J. Chem. Phys. 87, 7323 (1987)]. The microscopic structure of the electric double layer and the amount of adsorbed charge are investigated. Also, the temperature dependence of capacitance is analyzed. The capacitance depends on the kind of ions that form associative bonds with the surface sites and is determined by a net charge acting on the diffuse layer. The shape of the temperature dependence of capacitance essentially depends on the association energy and the density of bonding sites.  相似文献   

14.
扩散致相转化法制备结晶性聚合物多孔膜   总被引:6,自引:0,他引:6  
介绍了扩散致相转化法制备结晶性聚合物多孔膜的研究现状。其三元等温成膜体系的相图包含液-液分相和固-液分相两种相分离方式,是理解成膜过程的重要工具,总结了成膜机理和膜的结构形貌:单纯S-L相分离生成粒子状对称膜结构;单纯L-L相分离生成蜂窝状非对称膜结构;两种相分离方式竞争发生将生成多样的混合膜结构。铸膜液浓度、非溶剂种类、铸膜溶剂组成、凝胶浴组成、制膜温度是影响膜结构形貌的主要因素。  相似文献   

15.
Thermodynamic properties of quantum fluids are described using an extended version of the statistical associating fluid theory for potentials of variable range (SAFT-VR) that takes into account quantum corrections to the Helmholtz free energy A, based on the Wentzel-Kramers-Brillouin approximation. We present the theoretical background of this approach (SAFT-VRQ), considering two different cases depending on the continuous or discontinuous nature of the particles pair interaction. For the case of continuous potentials, we demonstrate that the standard Wigner-Kirkwood theory for quantum fluids can be derived from the de Broglie-Bohm formalism for quantum mechanics that can be incorporated within the Barker and Henderson perturbation theory for liquids in a straightforward way. When the particles interact via a discontinuous pair potential, the SAFT-VR method can be combined with the perturbation theory developed by Singh and Sinha [J. Chem. Phys. 67, 3645 (1977); and ibid. 68, 562 (1978)]. We present an analytical expression for the first-order quantum perturbation term for a square-well potential, and the theory is applied to model thermodynamic properties of hydrogen, deuterium, neon, and helium-4. Vapor-liquid equilibrium, liquid and vapor densities, isochoric and isobaric heat capacities, Joule-Thomson coefficients and inversion curves are predicted accurately with respect to experimental data. We find that quantum corrections are important for the global behavior of properties of these fluids and not only for the low-temperature regime. Predictions obtained for hydrogen compare very favorably with respect to cubic equations of state.  相似文献   

16.
The heat capacity or reversing heat flow signal from modulated‐temperature differential scanning calorimetry can be used to measure the onset of phase separation in a poly(vinylmethylether)/water mixture, clearly showing the special type III lower critical solution temperature demixing behavior. Characteristic of this demixing behavior is a three‐phase region, which is detected in the nonreversing heat flow signal. Stepwise quasi‐isothermal measurements through the phase transition show large excess contributions in the (apparent) heat capacity signal, caused by demixing/remixing heat effects on the timescale of the modulation (fast process). These excess contributions and their time‐dependent evolutions (slow process) are useful in understanding the kinetics of phase separation and the morphology (interphase) development. Care has to be taken, however, in interpreting the heat capacity signal derived from the amplitude of the modulated heat flow because nonlinear effects lead to the occurrence of higher harmonics. Therefore, the raw heat flow signal for quasi‐isothermal demixing and remixing measurements is also examined in the time domain. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1824–1836, 2003  相似文献   

17.
We use the recent fluids density functional theory of Tripathi and Chapman [Phys. Rev. Lett. 94, 087801 (2005); J. Chem. Phys. 122, 094506 (2005)] to investigate the phase behavior of athermal polymer/nanoparticle blends near a substrate. The blends are modeled as a mixture of hard spheres and freely jointed hard chains, near a hard wall. There is a first order phase transition present in these blends in which the nanoparticles expel the polymer from the surface to form a monolayer at a certain nanoparticle concentration. The nanoparticle transition density depends on the length of the polymer, the nanoparticle diameter, and the overall bulk density of the system. The phase transition is due to both packing entropy effects related to size asymmetry between the components and to the polymer configurational entropy, justifying the so-called "entropic push" observed in experiments. In addition, a layered state is found at higher densities which resembles that in colloidal crystals, in which the polymer and nanoparticles form alternating discrete layers. We show that this laminar state has nearly the same free energy as the homogeneously mixed fluid in the bulk and is nucleated by the surface.  相似文献   

18.
在Barker Henderson, Zhang以及Wertheim 等微扰理论的基础上,以方阱势硬球流体为参考体系,将Zhang的解析表达方法与Wertheim 的链成键自由能的处理方法结合起来,推导出自由链接的链状分子流体的Helmholtz自由能的解析表达式,并得到了压缩因子、内能、恒容热容等热力学性质的计算式.计算结果与MC(Monte Carlo)模拟结果吻合良好.对Zhang的解析表达式与“TPT D”(二阶Wertheim微扰理论)的结合也作了推导和计算.  相似文献   

19.
In this study, we explore the global phase behavior of a simple model for self-associating fluids where association reduces the strength of the dispersion interactions between bonded particles. Recent research shows that this type of behavior likely explains the thermodynamic properties of strongly polar fluids and certain micellar solutions. Based on Wertheim's theory of associating liquids [M. S. Wertheim, J. Stat. Phys. 42, 459 (1986); 42, 477 (1986)], our model takes into account the effect that dissimilar particle interactions have on the equilibrium constant for self-association in the system. We find that weaker interactions between bonded molecules tend to favor the dissociation of chains at any temperature and density. This effect stabilizes a monomeric liquid phase at high densities, enriching the global phase behavior of the system. In particular, for systems in which the energy of mixing between bonded and unbonded species is positive, we find a triple point involving a vapor, a dense phase of chain aggregates, and a monomeric liquid. Phase coexistence between the vapor and the monomeric fluid is always more stable at temperatures above the triple point, but a highly associated fluid may exist as a metastable phase under these conditions. The presence of this metastable phase may explain the characteristic nucleation behavior of the liquid phase in strongly dipolar fluids.  相似文献   

20.
The thermoreversible gelation of solutions of isotactic poly(methyl methacrylate) is investigated. Amorphous gels can be prepared in l-butanol by a combination of a liquid-liquid demixing with an upper critical demixing temperature and a glass transition. Annealing of the demixed solutions above their glass transition temperature TG, results in the formation of a crystalline gel. In oxylene, crystalline gels are formed by a liquid-liquid demixing with an lower critical demixing temperature and an annealing at room temperature. Very fast gelation is observed to occur far below room temperature in solvents like 2-butanone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号