首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 610 毫秒
1.
2.
This paper generalizes the recently proposed approaches for calculating the derivative couplings between adiabatic states in density-functional theory (DFT) based on a Slater transition-state density to transitions such as singlet-singlet excitations, where a single-determinant ansatz is insufficient. The proposed approach is based on restricted open-shell Frank et al. [J. Chem. Phys. 108, 4060 (1998)] theory used to describe a spin-adapted Slater transition state. To treat the dependence of electron-electron interactions on the nuclear positions, variational linear-response density-functional perturbation theory is generalized to reference states with an orbital-dependent Kohn-Sham Hamiltonian and nontrivial occupation patterns. The methods proposed in this paper are not limited to the calculation of derivative coupling vectors, but can also be used for the calculation of other transition matrix elements. Moreover, they can be used to calculate the linear response of open-shell systems to arbitrary external perturbations in DFT.  相似文献   

3.
We report an extension of the coupled cluster iterative-triples model, CC3, to excited states of open-shell molecules, including radicals. We define the method for both spin-unrestricted Hartree-Fock (UHF) and spin-restricted open-shell Hartree-Fock (ROHF) reference determinants and discuss its efficient implementation in the PSI3 program package. The program is streamlined to use at most O(N(7)) computational steps and avoids storage of the triple-excitation amplitudes for both the ground- and excited-state calculations. The excitation-energy program makes use of a Lowdin projection formalism (comparable to that of earlier implementations) that allows computational reduction of the Davidson algorithm to only the single- and double-excitation space, but limits the calculation to only one excited state at a time. However, a root-following algorithm may be used to compute energies for multiple states of the same symmetry. Benchmark applications of the new methods to the lowest valence (2)B(1) state of the allyl radical, low-lying states of the CH and CO(+) diatomics, and the nitromethyl radical show substantial improvement over ROHF- and UHF-based CCSD excitation energies for states with strong double-excitation character or cases suffering from significant spin contamination. For the allyl radical, CC3 adiabatic excitation energies differ from experiment by less than 0.02 eV, while for the (2)Sigma(+) state of CH, significant errors of more than 0.4 eV remain.  相似文献   

4.
A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.  相似文献   

5.
A method for calculating the UV-vis spectra of molecules with spatially degenerate ground states using time-dependent density-functional theory (TDDFT) is proposed. The new transformed reference via an intermediate configuration Kohn-Sham TDDFT (TRICKS-TDDFT) method avoids the difficulties caused by the multireference nature of spatially degenerate states by rather than utilizing the ground state instead taking a nondegenerate excited state with desirable properties as the reference for the TDDFT calculation. The scope and practical application of the method are discussed. Like all open-shell TDDFT calculations this method at times suffers from the inability to produce transitions to states that are eigenfunctions of the total spin operator. A technique for alleviating this difficulty to some extent is proposed. The applicability and accuracy of the TRICKS-TDDFT method is demonstrated through example calculations of several d(1) and d(2) transition metal complexes with tetrahedral and octahedral symmetries. For the most part, the results of these calculations are similar in quality to to those obtained from standard TDDFT calculations.  相似文献   

6.
Nonstationary perturbation theory equations have been obtained for open-shell molecules. The equations were formulated in terms of a density matrix in the MO-LCAO method. The first variant is coupled perturbation theory in the framework of the restricted Hartree-Fock method for open shells, and the second variant is variational perturbation theory for ground and excited electronic states of molecules, in which the perturbed wave function of the system is constructed in the form of a superposition of the ground and singly excited configurations composed of the Hartree-Fock orbitals of the open shell. A calculation of the Cauchy moments of the dynamic dipole polarizability of several molecules of conjugated open-shell hydrocarbons, viz., doublet states of odd alternant hydrocarbons, as well as triplet excited states and doublet states of radical ions of even alternant hydrocarbons, has been carried out in the framework of both methods.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 21, No. 1, pp. 18–27, January–February, 1985.  相似文献   

7.
The ability to perform geometry optimizations on large molecular systems is desirable for both closed- and open-shell species. In this work, the restricted open-shell Hartree-Fock (ROHF) gradients for the fragment molecular orbital (FMO) method are presented. The accuracy of the gradients is tested, and the ability of the method to reproduce adiabatic excitation energies is also investigated. Timing comparisons between the FMO method and full ab initio calculations are also performed, demonstrating the efficiency of the FMO method in modeling large open-shell systems.  相似文献   

8.
An analytical excitation energy gradient of long-range corrected time-dependent density functional theory (LC-TDDFT) is presented. This is based on a previous analytical TDDFT gradient formalism, which avoids solving the coupled-perturbed Kohn-Sham equation for each nuclear degree of freedom. In LC-TDDFT, exchange interactions are evaluated by combining the short-range part of a DFT exchange functional with the long-range part of the Hartree-Fock exchange integral. This LC-TDDFT gradient was first examined by calculating the excited state geometries and adiabatic excitation energies of small typical molecules and a small protonated Schiff base. As a result, we found that long-range interactions play a significant role even in valence excited states of small systems. This analytical LC-TDDFT gradient was also applied to the investigations of small twisted intramolecular charge transfer (TICT) systems. By comparing with calculated ab initio multireference perturbation theory and experimental results, we found that LC-TDDFT gave much more accurate absorption and fluorescence energies of these systems than those of conventional TDDFTs using pure and hybrid functionals. For optimized excited state geometries, LC-TDDFT provided fairly different twisting and wagging angles of these small TICT systems in comparison with conventional TDDFT results.  相似文献   

9.
10.
We present density-functional theory calculations of triplet-triplet absorption by three different approaches based on time-dependent density-functional theory (DFT): unrestricted DFT linear response, open-shell restricted DFT linear response applied to the triplet state, and quadratic response with triplet excitations applied to the ground state. Comparison is also made with corresponding results obtained by Hartree-Fock and multiconfiguration self-consistent-field response theory. Two main conclusions concerning triplet-triplet transitions are drawn in this study: First, the very good agreement between unrestricted and restricted DFT results indicates that spin contamination of the triplet state is not a serious problem when computing triplet-triplet spectra of common organic molecules. Second, DFT response calculations of triplet-triplet transitions can be affected by triplet instability problems, especially for the combination of DFT quadratic response with functionals containing fractional exact Hartree-Fock exchange.  相似文献   

11.
Almost all time-dependent density-functional theory (TDDFT) calculations of excited states make use of the adiabatic approximation, which implies a frequency-independent exchange-correlation kernel that limits applications to one-hole/one-particle states. To remedy this problem, Maitra et al. [N.T. Maitra, F. Zhang, R.J. Cave, K. Burke, Double excitations within time-dependent density functional theory linear response theory, J. Chem. Phys. 120 (2004) 5932 ] proposed dressed TDDFT (D-TDDFT), which includes explicit two-hole/two-particle states by adding a frequency-dependent term to adiabatic TDDFT. This paper offers the first extensive test of D-TDDFT, and its ability to represent excitation energies in a general fashion. We present D-TDDFT excited states for 28 chromophores and compare them with the benchmark results of Schreiber et al. [M. Schreiber, M.R. Silva-Junior, S.P.A. Sauer, W. Thiel, Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3, J. Chem. Phys. 128 (2008) 134110]. We find the choice of functional used for the A-TDDFT step to be critical for positioning the 1h1p states with respect to the 2h2p states. We observe that D-TDDFT without HF exchange increases the error in excitations already underestimated by A-TDDFT. This problem is largely remedied by implementation of D-TDDFT including Hartree-Fock exchange.  相似文献   

12.
13.
An approach to treat static correlation within a density-functional framework is presented. To that end, a multiconfiguration optimized effective potential (MCOEP) method is derived. In contrast to standard multiconfiguration self-consistent field (MCSCF) methods and previous combinations of MCSCF procedures with density-functional theory, the MCOEP method yields well-defined physically meaningful orbital and eigenvalue spectra. In addition to the electronic ground state also excited electronic states can be described. The MCOEP method is implemented invoking the localized Hartree-Fock approximation, leading to a multiconfiguration localized Hartree-Fock approach. Applications of the new method to the dissociation of the hydrogen molecule and the isomerization of ethene and cyclobutadiene show that it is capable of describing situations that are characterized by strong static correlation.  相似文献   

14.
This paper presents an optimized effective potential (OEP) approach based on density functional theory (DFT) for individual excited states that implements a simple method of taking the necessary orthogonality constraints into account. The amended Kohn-Sham (KS) equations for orbitals of excited states having the same symmetry as the ground one are proposed. Using a variational principle with some orthogonality constraints, the OEP equations determining a local exchange potential for excited states are derived. Specifically, local potentials are derived whose KS determinants minimize the total energies and are simultaneously orthogonal to the determinants for states of lower energies. The parametrized form of an effective DFT potential expressed as a direct mapping of the external potential is used to simplify the OEP integral equations. A performance of the presented method is examined by exchange-only calculations of excited state energies for simple atoms and molecules.  相似文献   

15.
16.
We have employed the Douglas-Kroll-Hess approximation to derive the perturbative Hamiltonians involved in the calculation of NMR spin-spin couplings in molecules containing heavy elements. We have applied this two-component quasirelativistic approach using finite perturbation theory in combination with a generalized Kohn-Sham code that includes the spin-orbit interaction self-consistently and works with Hartree-Fock and both pure and hybrid density functionals. We present numerical results for one-bond spin-spin couplings in the series of tetrahydrides CH(4), SiH(4), GeH(4), and SnH(4). Our two-component Hartree-Fock results are in good agreement with four-component Dirac-Hartree-Fock calculations, although a density-functional treatment better reproduces the available experimental data.  相似文献   

17.
Singlet excited state geometries of a set of medium sized molecules with different characteristic lowest excitations are studied. Geometry optimizations of excited states are performed with two closely related restricted open-shell Kohn–Sham methods and within linear response to time-dependent density functional theory. The results are compared to wave-function based methods. Excitation energies (vertical and adiabatic) calculated from the open-shell methods show systematic errors depending on the type of excitation. However, for all states accessible by the restricted methods a good agreement for the geometries with time-dependent density functional theory and wave-function based methods is found. An analysis of the energy with respect to the mixing angle for the singly occupied orbitals reveals that some states (mostly [n→π*]) are stable when symmetry constraints are relaxed and others (mostly [π→π*]) are instable. This has major implications on the applicability of the restricted open-shell methods in molecular dynamics simulations.  相似文献   

18.
We present a second-quantization based atomic-orbital method for the computation of time-dependent response functions within Hartree-Fock and Kohn-Sham density-functional theories. The method is suited for linear scaling. Illustrative results are presented for excitation energies, one- and two-photon transition moments, polarizabilities, and hyperpolarizabilities for hexagonal BN sheets with up to 180 atoms.  相似文献   

19.
Restricted open-shell Hartree-Fock (ROHF) theory is formulated as a projected self-consistent unrestricted HF (UHF) model by mathematically constraining spin density eigenvalues. This constrained UHF (CUHF) wave function is identical to that obtained from Roothaan's effective Fock operator. The α and β CUHF Fock operators are parameter-free and have eigenvalues (orbital energies) that are physically meaningful as in UHF, except for eliminating spin contamination. This new way of solving ROHF leads to orbitals that turn out to be identical to semicanonical orbitals. The present approach removes ambiguities in ROHF orbital energies.  相似文献   

20.
An analytical formulation for the geometrical derivatives of excitation energies within the time-dependent density-functional tight-binding (TD-DFTB) method is presented. The derivation is based on the auxiliary functional approach proposed in [Furche and Ahlrichs, J Chem Phys 2002, 117, 7433]. To validate the quality of the potential energy surfaces provided by the method, adiabatic excitation energies, excited state geometries, and harmonic vibrational frequencies were calculated for a test set of molecules in excited states of different symmetry and multiplicity. According to the results, the TD-DFTB scheme surpasses the performance of configuration interaction singles and the random phase approximation but has a lower quality than ab initio time-dependent density-functional theory. As a consequence of the special form of the approximations made in TD-DFTB, the scaling exponent of the method can be reduced to three, similar to the ground state. The low scaling prefactor and the satisfactory accuracy of the method makes TD-DFTB especially suitable for molecular dynamics simulations of dozens of atoms as well as for the computation of luminescence spectra of systems containing hundreds of atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号