首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Because of the need for tunable solid state lasers in the blue region of the spectrum, a number of recent studies have been on the optical properties of Eu2+ in various crystals lattices. The absorption and emission from Eu2+ ions in fluoride hosts arise from both 5d→4f and 4f→4f transitions. The absorption is in the ultra-violet and the emission is in the blue. The 4f-4f transitions are very sharp and are located around 360 nm. The 5d→4f emission bands at 405 nm and 525 nm are broad and host lattice dependent. We have studied the temperature dependence of the optical properties of RbMgF3:Eu2+ including absorption, emission, and excitation. In the case of the emission studies both temperature dependence and the lifetimes of the transitions have been measured. These transitions are discussed in detail.  相似文献   

2.
Bi3+ and Eu3+ codoped cubic Gd2O3 nanocrystals were prepared by the Pechini sol-gel method. Their photoluminescent properties were investigated under ultraviolet light excitation. The introduction of Bi3+ ions broadened the excitation band of Eu3+ emission, of which a new strong band occurred ranging from 320 to 380 nm due to the 6s2→6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. Upon 325 and 355 nm light excitation, the luminescent intensity of Eu3+ ions was remarkably improved by the incorporation of Bi3+ ions. But a significant quenching of Eu3+ emission was observed under 266 nm light excitation when Bi3+ was codoped. The possible energy transfer processes between Bi3+ and Eu3+ were discussed. The decay curves of Eu3+ emission under the excitation of 266 nm pulsed laser were measured and gave further evidence for our discussion.  相似文献   

3.
Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800°C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV–Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer’s method and Williamson–Hall plots and are found to be in the ranges 40–60 nm and 30–80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at ~590, 612 and 625 nm, which are due to the transitions 5D07F0, 5D07F2 and 5D07F3 of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s2→6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380°C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.  相似文献   

4.
Photoluminescence and excitation spectra of the spinel-type MgGa2O4 with 0.5 mol. % Mn2+ ions and Eu3+ content from 0 to 8 mol. % have been investigated in this work at room temperature. Polycrystalline samples were synthesized via high-temperature solid-state reaction method. Photoluminescence spectra of all samples exhibit host emission presented by a broad “blue” band peaking ∼430 nm, which consists of at least three elementary bands that correspond to different host defects. Excitation of the host luminescence showed the broad band with a maximum at 360 nm. Characteristic bands of d–d transitions of Mn2+ ions and f–f transitions of Eu3+ ions together with charge-transfer bands (CTB) of these ions were also found on the excitation spectra. Mn2+ and Eu3+ co-doped samples emit in green and red spectral regions. Mn2+ ions are responsible for the green emission band at 505 nm (4Т16А1 transition). The studies of photoluminescence spectra of activated samples with different Eu3+ ions content show characteristic f–f luminesecence of Eu3+ ions. The maximum of Eu3+ emission was found at 618 nm (5D07F2) and optimal concentration of activator ions was around 4 mol. %.  相似文献   

5.
A green-emitting phosphor of hexagonal BaZnSiO4:Eu2+ was prepared by a combustion-assisted synthesis method and an efficient green emission from ultraviolet to visible light was observed. The luminescence and crystallinity were investigated by using luminescence spectrometry and X-ray diffractometry. In the hexagonal structure of BaZnSiO4:Eu2+ phosphor, Eu2+ ions occupy three different lattice sites by substitution for Ba2+ ions. Eu2+ ions on Ba (1) and Ba (2) sites gave emissions at about 505 nm while Eu2+ ions on Ba (3) sites showed an emission band at 403 nm. The excitation spectrum is a broad band extending from 260 to 465 nm, which matches the emission of ultraviolet light-emitting diodes. The critical quenching concentration of Eu2+ in BaZnSiO4:Eu2+ phosphor is about 0.05 mol. The value of the critical transfer distance is calculated as 10.97 Å. The corresponding concentration quenching mechanism is verified to be the electric multipole–multipole interaction. The CIE coordinates of the optimized sample $\mathrm{Ba}_{0.95}\mathrm{ZnSiO}_{4}{:}\mathrm{Eu}_{0.05}^{2+}$ were calculated as (x,y)=(0.172,0.463).  相似文献   

6.
In this study, photoluminescence (PL) and photostimulated luminescence (PSL) properties in KBr:Eu2+, Tl+ powder phosphors are reported. PL emission spectra of these Tl+ co-doped KBr:Eu2+ phosphors show four overlapping bands around 310, 325, 360 and 375 nm in addition to the characteristic of Eu2+ ions at 420 nm. These additional short wavelength bands were attributed to centres involving Tl+ ions. The decrease in PSL intensity of γ-irradiated KBr:Eu2+, Tl+ powder phosphors with Tl+ concentration and the absence of thallium emission bands in PSL were attributed to the efficient electron trapping by Tl+ ions during irradiation.  相似文献   

7.
The luminescence properties of polyphosphates NaEu x Gd(1?x)(PO3)4 (x = 0–1.00) and the energy transfer from Gd3+ to Eu3+ were studied. In undoped NaGd(PO3)4 sample, the photon cascade emission of Gd3+ was observed under 8S7/26GJ excitation (201 nm) in which the emission of a red photon due to 6GJ6PJ transition is followed by an ultraviolet photon emission due to 6PJ8S7/2 transition. When part of Gd3+ ions in the host NaGd(PO3)4 were substituted by Eu3+ ions, the NaGd(PO3)4:Eu3+ sample showed intensive red emission under 172-nm vacuum-ultraviolet (VUV) excitation which is suitable for mercury-free fluorescent lamps and plasma display panel applications. Based on the VUV–visible spectroscopic characteristics and the luminescence decay properties of NaGd(PO3)4:Eu3+, it was found that the quantum cutting by a two-step energy transfer from Gd3+ to Eu3+ can improve the red emission of Eu3+ ions under VUV excitation but only a part of the excitation energy in the excited 6PJ states within Gd3+ ions can be transferred to Eu3+ ions for its red emission, and the nonradiative energy transfer efficiencies from the excited 6PJ states within Gd3+ to Eu3+ were calculated.  相似文献   

8.
Zinc silicate phosphors co-doped with Eu3+ ions and also with both Eu3+ and Tb3+ ions were prepared by high temperature solid state reaction in air or reducing atmosphere. The luminescence characteristics of the prepared phosphors were investigated. While in the samples prepared in air, Eu3+ emission was found to be dominant over Tb3+ emission, in the samples prepared in reducing atmosphere, intense Eu2+ emission at 448 nm was found to be predominant over narrow Tb3+ emission. Luminescence studies showed that Eu3+ ions occupy asymmetric sites in Zn2SiO4 lattice. The intense f-f absorption peak of Eu3+ at 395 nm observed in these phosphors suggests their potential as red emitting phosphors for near ultra-violet light emitting diodes.  相似文献   

9.
Y2O3:Eu3+, Tb3+ phosphors with white emission are prepared with different doping concentration of Eu3+ and Tb3+ ions and synthesizing temperatures from 750 to 950 °C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu3+ and Tb3+ co-doped Y2O3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu3+ and two at 481 and 541 nm originate from Tb3+, under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu3+ and Tb3+ ions were induced into the Y2O3 lattice and the energy transfer from Tb3+→Eu3+ ions in these phosphors was found. The Commission International de l’Eclairage (CIE) chromaticity shows that the Y2O3:Eu3+, Tb3+ phosphors can obtain an intense white emission.  相似文献   

10.
Eu2+激活的Ca3SiO5绿色荧光粉的制备和发光特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
杨志平  刘玉峰 《物理学报》2006,55(9):4946-4950
研究了Eu2+激活的绿色发光材料Ca3SiO5的制备条件和发光性质. Eu2+中心形成主峰值为501 nm和次峰值为570 nm的特征宽带,两峰值叠加形成发射峰值为502nm的绿色发射光谱带. 利用这些光谱结果和Van Uitert 经验公式,确认Ca3SiO5:Eu2+中存在两种性质有差异的Eu2+发光中心,它们分别占据基质中八配位的Ca2+(Ⅰ)格位和四配位的Ca2+(Ⅱ)格位. 其激发光谱分布在250—450 nm的波长范围,峰值位于375 nm处,可以被InGaN管芯产生的350—410 nm辐射有效激发. 关键词: 发光 荧光粉 绿色荧光粉 3SiO5')" href="#">Ca3SiO5 2+')" href="#">Eu2+  相似文献   

11.
《Radiation measurements》2000,32(4):343-348
Ultraviolet radiation induced changes in photoluminescence (PL) and thermally stimulated luminescence (TSL) of europium activated calcium sulphate (CaSO4:Eu3+, Eu2+) and terbium doped calcium fluoride (CaF2:Tb3+) phosphors have been studied. PL measurements suggest conversion of Eu3+ to Eu2+ on 254 nm irradiation corresponding to charge transfer band of Eu3+ ions and reduction of Eu2+ ions with 365 nm illumination representing a f–d transition of Eu2+ ions. Similar studies carried out on CaF2:Tb3+ phosphor, however, do not show any significant wavelength specific changes. The integrated TSL output appears to be rate-dependent for both phosphors. The wavelength dependent changes in TSL output observed for CaSO4:Eu phosphor have been correlated with those obtained in PL studies. The changes in TSL and PL characteristics of CaF2:Tb3+ phosphor have been explained on the basis of stabilisation of traps based on matrix specific charge similarities.  相似文献   

12.
Excitation and luminescence spectra of RbCl co-doped with divalent and trivalent europium ions are reported. Spectral dips appearing in the blue emission from Eu2+ are resulted from the radiative energy transfer from Eu2+ to Eu3+ and consequently induces the luminescence from Eu3+ that is responsible for the 5D07FJ (J=0, 1, 2, 3, 4) transitions. The induced luminescence has been characterized as a function of temperature and a decay time. In addition, the polarized emission from RbCl doped with only Eu2+ is also reported.  相似文献   

13.
MgO:Eu3+ nanocrystals with average diameter around 15 nm were prepared via a facile combustion method under a weak reductive atmosphere at temperature as low as 300°C. The photoluminescence spectra showed that the MgO:Eu3+ nanocrystals emit white light, the hypersensitive transition (5 D 07 F j of Eu3+) emission was prominent in the emission spectra resulting from the noinversion symmetry local site at which Eu3+ ions were located. Two kinds of luminescence sites of Eu3+ are identified by means of the fluorescence decay and site-selective spectroscopy. The excitation and absorption spectra indicated that the absorption of surface state decreased with the increase of Eu3+ concentration, meaning that the surface defect decreased through Eu3+ doping for some of them located at the disordered sites near the surface or absorbed at the surface of MgO host. Meanwhile, absorptivity and CIE chromaticity coordinates of all samples were measured; the results were in accordance with the excitation and absorption spectra and photoluminescence spectra, respectively.  相似文献   

14.
Pyrochlore‐structured yttrium titanate phosphors activated by trivalent europium ions (Y2Ti2O7(YT):Eu3+), with spherical morphology, were synthesized at different pH values by a solvothermal process. From the structural and morphological measurements, the annealing temperature had no effect on the spherical morphology of the YT:Eu3+ sample. The photoluminescence excitation and emission spectra were taken by activating the Eu3+ ions in the YT host lattice as functions of Eu3+ ion concentration and annealing temperature. The optimal doping concentration was found to be 4 mol%, exhibiting an excellent orange–red emission due to the highest intensity of the 5D07F1 transition. When the YT:Eu3+ phosphor was mixed with YAG:Ce3+ phosphor, a brilliant white light emission was achieved. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Two series of calcium gallate phosphors: Ca1?xEuxGa4O7 and Ca1?2xEuxNaxGa4O7 (x=0, 0.002, 0.01, 0.02, 0.03, 0.05) were synthesized by a modified Pechini method and their optical properties at 298 and 77 K were investigated. In undoped CaGa4O7 upon 255 nm excitation a bluish white emission (λmax=500 nm) followed by an afterglow of the same color lasting for 10–20 s was observed. Eu3+-doping quenched the host-related luminescence and the characteristic red emission of the dopant with maximum at 613 nm appeared. Its excitation spectrum consisted of a broad band assigned to ligand to metal, O2?→Eu3+, charge transfer absorption and narrow lines arising from intraconfigurational transitions within the 4f6 states of Eu3+ ion. The effects of Eu3+ concentration and Na+ co-doping on the luminescence properties and decay kinetics were studied. Low temperature emission spectra showed that Eu3+ ions are positioned in environments of different symmetries. Their relative populations changed with the activator content. Co-doping with Na+ ions led to a remarkable reduction of the number of Eu3+ sites as well as to noticeable improvement of the luminescence brightness though it did not affect the decay time of the emission. The quantum efficiencies of singly doped CaGa4O7:Eu3+ were very low (in the range of 1–3.7%). Na+ co-doping improved this parameter leading to the highest efficiency of 11% for CaGa4O7:3%Eu3+,3%Na+.  相似文献   

16.
ABSTRACT

According to the spectra of stationary X-ray excited luminescence (XEL) of BaF2: Eu nanophosphors at 80 and 294 K, it was revealed that the thermal annealing of fine-grained nanoparticles (d?=?35?nm) in the range of 400–1000°C, which is accompanied by an increase of their sizes in the range of 58–120?nm, does not result in effective changes of the charge state of Eu3 + → Eu2 + activator, in contrast to CaF2: Eu nanoparticles. The maximum light output of X-ray excited luminescence of BaF2: Eu nanophosphors in the 590?nm emission band of Eu3+ ion was observed at an annealing temperature of 600°C with the average size of nanoparticles 67?nm. The subsequent growth of annealing temperatures, especially in the range of 800–1000°C, causes decrease in the light output of X-ray excited luminescence due to the increase of defect concentration in the lattice as a result of sharp increase of nanoparticle sizes and their agglomeration. In BaF2: Eu nanoparticles of 58?nm size, according to the thermostimulated luminescence (TSL) spectrum, transformation of Eu3+ → Eu2+ under the influence of long-time X-ray irradiation was revealed for the peak of 151?K. Thus, X-ray excited luminescence spectra of BaF2: Eu nanophosphors are formed predominantly due to the emission of Eu3+ ions, while emission of Eu2+ ions is observed in the TSL spectra.  相似文献   

17.
White emitting nanocrystalline ZrO2:Eu3+ phosphors were synthesized by a simple precipitation route without using a capping agent. X-ray diffraction (XRD) study of ZrO2 and ZrO2:Eu3+samples revealed the presence of monoclinic and tetragonal phases. The monoclinic phase increases with increase in the annealing temperature while the tetragonal phase increases with increase in the concentration of Eu3+. This can be attributed to the presence of oxygen vacancy evolved when Zr4+ is replaced by Eu3+. Photoluminescence (PL) emission peaks of Eu3+ are observed at 591, 596, 606 and 613 nm on monitoring excitation wavelengths at 250, 286, 394 and 470 nm. The peaks at 591 and 606 nm were found to correlate with the tetragonal phase and those at 596 and 613 nm with the monoclinic phase. Intensities of these peaks are found to change as the crystal structure changes. The lifetime value corresponding to 591 nm peak increases with Eu3+ concentration at a particular heating temperature indicating increase of tetragonal phase with respect to monoclinic phase. The CIE co-ordinates of the doped samples were found to be close to that of white color (0.33, 0.33). The changes in the crystal structure of the doped samples due to doping and annealing did not affect the white color emission.  相似文献   

18.
Eu2+:CeBr3 crystals were grown by vertical Bridgman growth method and slight aliovalent doping of Eu2+ in the CeBr3 crystal did not change the crystal structure. The X-ray stimulated luminescence, photoluminescence, decay kinetics and scintillation properties were investigated at room temperature. The X-ray stimulated luminescence spectra exhibited wide broad emission bands from 3.54 eV to 2.95 eV in the Eu2+:CeBr3 crystal with high content of 620 ppm of Eu2+, which were the overlap of the emission bands ascribed to 5d → 4f transition of Ce3+ and 4f65 d1 → 4f7 transition of Eu2+, respectively. When the content of Eu2+ was decreased to 70 ppm, another emission band centered at 2.29 eV was observed. The photoluminescence spectra showed the energy transfer from Ce3+ to Eu2+. This decreased the Ce3+ emission intensity but enhanced the Eu2+ emission intensity. The photoluminescence decay time of Ce3+ emission decreased from 14 ns to 10 ns when the content of Eu2+ increased from 70 ppm to 620 ppm. The decay time of the emission of 525 nm did not change with the excitation wavelength and Eu2+ content, which could be assigned to the excitons that were bound on Eu2+ related centers. The light output of the Eu:CeBr3 crystal under the excitation of 241Am radioactive source was less than 20.2% of Tl:NaI crystal.  相似文献   

19.
用高温固相法合成了Eu2+,Mn2+共激活的Ca2SiO3Cl2高亮度白色发光材料,并对其发光性质进行了研究. 该荧光粉在近紫外光激发下发出强的白色荧光,Eu2+中心形成峰值为419 nm和498 nm的特征宽带,通过Eu2+中心向Mn2+中心的能量传递导致了峰值为578 nm的发射,三个谱带叠加从而在单一基质中得到了白光. 激发光谱均分布在250—415 nm的波长范围,红绿蓝三个发射带的激发谱峰值分别位于385 nm,412 nm,370 nm和396 nm处,可以被InGaN管芯产生的紫外辐射有效激发. Ca2SiO3Cl2:Eu2+,Mn2+是一种很有前途的单一基质白光LED荧光粉.  相似文献   

20.
Spectroscopic investigations are presented of KMgF3:Eu2+ crystal under high hydrostatic pressure from ambient to 310 kbar. The sample was excited by 30 ps pulses generated by optical parametric generator (OPG) system with wavelength controlled between 210 and 325 nm. The Grüneisen parameters of individual phonons are obtained from the pressure shift of the Eu2+ emission related to the 6P7/28S7/2 transition accompanied by phonon sideband. The luminescence decays exponentially for the pressure below 135 kbar with lifetime of 3.30 ms and slightly nonexponential above 135 kbar, while the average decay time is nearly independent of the pressure. The results obtained for KMgF3:Eu2+ are compared with those for LiBaF3:Eu2+ in which the 6P7/28S7/2 emission is replaced by the broadband emission of the 4f65d1→4f7 transition at high hydrostatic pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号