首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The NMR spectra of [2.2]paracyclophane with β- or γ-cyclodextrin in DMF-d7 at room temperature do not show significant complexation, while HPLC of the complexes in mixed H2O:alcohol solvents demonstrate complexation with different stoichiometries. At 243 K in DMF solution the H3 and H5 NMR signals of γ-cyclodextrin (but not β) exhibit complexation-induced chemical shifts denoting complex formation. According to HPLC, at room temperature the [2.2]paracyclophane complex with β-cyclodextrin in 20% H2O:EtOH exhibits 1:2 stoichiometry with K 1 = 1×102 ± 2, K 2 = 9.0×104 ± 2×103 (K = 9×106) while that with γ-cyclodextrin in 50% H2O:MeOH exhibits 1:1 stoichiometry with K 1 = 4×103 ± 150 M−1. Thermodynamic parameters for both complexes have been estimated from the retention time temperature dependence. For the β-cyclodextrin complexation at 25°C ΔG 0 CD is −39.7 kJ mol−1 while ΔH 0 CD and ΔS 0 CD are −88.2 kJ mol−1 and −0.16 kJ mol−1 K−1. For γ-cyclodextrin, the corresponding values are ΔG 0 CD = −20.5 kJ mol−1, ΔH 0 CD = −33.5 kJ mol−1 and ΔS 0 CD = −0.04 kJ mol−1 K−1.   相似文献   

2.
The complexation behaviors of tetrapod 1,2,4,5-tetrakis(8-hydroxyquinolinoxymethyl) benzene (1) and dipod 1,2-bis(8-hydroxyquinolinoxymethyl)benzene (2) have been determined by fluorescence spectroscopy in CH3CN–H2O (4:1) buffered at pH 6.9 [HEPES 10 mM] and by 1H NMR in CD3CN-CDCl3 (1:1) mixture. Tetrapod 1 can recognize Ag+(10–40 μM) even in the presence of (500 μM) of alkali and alkaline earth metal ions. However, transition metal ions interfere in the estimation of Ag+. Dipod 2 shows poor selectivity towards Ag+. The 1H NMR based titrations of podands 1 and 2 against AgNO3 show characterstic changes in chemical shifts in quinoline, methylene and aromatic protons. The spectral fitting of fluorescence and 1H NMR titration data has been used to evaluate the stoichiometries of complexes and their complexation constants.  相似文献   

3.
Phosphoryl chloride is used as a starting material to synthesize new diazaphosphole, (1) and diazaphosphorinane, (2). The products are characterized by 1H, 13C, 31P NMR, and IR spectroscopy. A high value 2 J(PNH) = 17.0 Hz, 17.2 Hz is measured for two non-equivalent NH protons of endocyclic nitrogen atoms in compound 1, while it greatly decreases to 4.5 Hz in 2. Also, great amounts are obtained for two 2 J(P,C) as well as two 3 J(P,C) in the 13C NMR spectrum of 1, but they are zero in 2. Here, the effect of ring strain and ring size on the structural and spectroscopic parameters is observed. The 31P NMR spectra reveal that δ(31P) of compound 1 is far much more downfield (12.63 ppm) relative to that of compound 2 (−10.39 ppm). Furthermore, ab initio quantum chemical calculations are performed to optimize the structures of these molecules by density functional theory (B3LYP) and Hartree-Fock (HF) methods, using the standard 6−31+G** basis set. The stabilization energies are calculated by the equation ΔE stabilization = E molecule − ΣE i , where i = atom. To obtain the atomic hybridizations, NBO computations are made at the B3LYP/6−31+G** level. Also, by NMR calculations the 1H, 13C, 31P chemical shifts are obtained and compared with the experimental ones.  相似文献   

4.
The effect of pH and neutral electrolyte on the interaction between humic acid/humate and γ-AlOOH (boehmite) was investigated. The quantitative characterization of surface charging for both partners was performed by means of potentiometric acid–base titration. The intrinsic equilibrium constants for surface charge formation were logK a,1 int=6.7±0.2 and logK a,2 int = 10.6±0.2 and the point of zero charge was 8.7±0.1 for aluminium oxide. The pH-dependent solubility and the speciation of dissolved aluminium was calculated (MINTEQA2). The fitted (FITEQL) pK values for dissociation of acidic groups of humic acid were pK 1 = 3.7±0.1 and pK 2 = 6.6±0.1 and the total acidity was 4.56 mmol g−1. The pH range for the adsorption study was limited to between pH 5 and 10, where the amount of the aluminium species in the aqueous phase is negligible (less than 10−5 mol dm−3) and the complicating side equilibria can be neglected. Adsorption isotherms were determined at pH ∼ 5.5, ∼8.5 and ∼9.5, where the surface of adsorbent is positive, neutral and negative, respectively, and at 0.001, 0.1, 0.25 and 0.50 mol dm−3 NaNO3. The isotherms are of the Langmuir type, except that measured at pH ∼ 5.5 in the presence of 0.25 and 0.5 mol dm−3 salt. The interaction between humic acid/humate and aluminium oxide is mainly a ligand-exchange reaction with humic macroions with changing conformation under the influence of the charged interface. With increasing ionic strength the surface complexation takes place with more and more compressed humic macroions. The contribution of Coulombic interaction of oppositely charged partners is significant at acidic pH. We suppose heterocoagulation of humic acid and aluminium oxide particles at pH ∼ 5.5 and higher salt content to explain the unusual increase in the apparent amount of humic acid adsorbed. Received: 20 July 1999 /Accepted in revised form: 20 October 1999  相似文献   

5.
Summary.  The complexes RuTp(cod)X (X = Br (2), I (3), CN (4)) have been obtained by the reaction of RuTp(cod)Cl (1) with KX in boiling MeOH in high yields. The cationic complexes [RuTp(cod)(py)]+ (5), [RuTp(cod)(dmso)]+ (6), and [RuTp(cod)(CH3CN)]+ (7) were prepared as the CF3SO3 salts by reacting 1 with 1 equivalent of AgCF3SO3 in the presence of the respective co-ligand in CH2Cl2. The crystal structures of 1, 3, 4, 5, 6, and 7 are reported. Structural features are discussed in conjunction with 1H, 13C, and 15N NMR spectroscopic data revealing a linear correlation of 15N chemical shifts and Ru-N (trans to X(L)) bond distances. Received August 31, 2000. Accepted (revised) October 23, 2000  相似文献   

6.
The binding behavior of three aromatic diamino-bridged bis(β-cyclodextrin)s (2–4) with four bile salts {cholate (CA), deoxycholate (DCA), glycocholate (GCA) and taurocholate (TCA)} has been investigated at 25 °C in a phosphate buffer (pH=7.20) by fluorescence and 2D NMR spectroscopy. The results indicate that these bis(β-cyclodextrin)s act as fluorescent sensors. From the ROESY spectra, it is deduced that the phenyl moieties of bis(β-cyclodextrin)s 2–4 are partially self included in the cyclodextrin cavity, and are not expelled from the cavity upon complexation with bile guests. Owing to the cooperative host-tether-guest binding mode in which the linker and guest are co-included in the two cyclodextrin cavities, these bis(β-cyclodextrin)s significantly enhance the binding ability and selectivity as compared with the native β-cyclodextrin 1. Possessing suitable tether length, bis(β-cyclodextrin) 3 gives the highest K S values, ranging up to 39,900 mol⋅L−1, for complexation with CA. The complex stability constants are discussed from the viewpoint of multiple recognitions between host and guest.  相似文献   

7.
Kinetics and equilibrium of the complexation of Al3+ with a polycarboxylic acid (PCA, random copolymer of maleic and acrylic acid with a mean molecular weight of 92 kDa) are investigated by the stopped flow technique and potentiometric titration. The complexation proceeds according to the Eigen–Tamm mechanism, i.e. in first diffusion-controlled step an outer sphere complex is formed. The second rate determining step is the formation of the inner sphere complex, controlled by the exchange rate of hydration water. For this second step the rate constant is k 1=3 s-1. It is in the order of magnitude of the water exchange at the Al3+ ion as expected for the Eigen–Tamm mechanism. The activation parameters are also determined. Parallel to this direct reaction path a base catalyzed path is found, typical for complexation reactions of hydrolyzable metal ions. Stable complexes are formed for which the overall association constant K ass=Q o(1+K i) is determined by two parts: a chemical (intrinsic) part, described by the inner sphere association constant K i=3 and an electrostatically controlled part described by the outer-sphere association quotient Q o. The evaluation of the kinetic experiments allows to determine the value of log(Q o) as a function of pH: 3.3<log Q o<4.6. From these data the potential is calculated in the range −67 to ∝93 mV at pH values between 2 and 4. For comparison, analogous experiments with the monomeric subunits of the polyacid, glutarate (GA), and tricarballylate (TCA), are performed. The complexation with the monomeric subunits glutaric- and tricarballylic acid can be explained within the classical view of a discrete outer sphere association constant Q o. Received: 13 November 1997 Accepted: 24 March 1998  相似文献   

8.
The inclusion complexation of p-sulfonatocalix[6]arene (Calix-S6) with three kinds of phenothiazine dyes was studied spectrophotometrically in a mixture of a room-temperature ionic liquid [bmim]BF4 (1-butyl-3-methylimidazolium tetrafluoroborate) and ethanol. We have determined the association constants of Calix-S6 with phenothiazine dyes under external static pressure up to 767 bar in the [bmim]BF4-ethanol and alcohol-water mixtures. With increasing external pressure, the inclusion equilibrium in the alcohol-water mixtures was shifted to the dissociation side. Conversely, the inclusion equilibrium of methylene blue (MB) and azure A (AA) in the ionic liquid mixture was shifted to the association side. From the analysis of the pressure effects, the reaction volumes ΔV for inclusion complexation were estimated as −7 to 9 cm3 mol−1 in the [bmim]BF4-ethanol mixture and 20–32 cm3 mol−1 in the alcohol-water mixtures. Based on the results, we have suggested that there is a competing complexation between the included dye and [bmim]BF4 molecules in the ionic liquid.  相似文献   

9.
Reduction of the bent-sandwich [·5-(Ph)Ind]2HfCl2 complex (1) (where (Ph) Ind is the 2-phenylindenyl anion) in a THF medium was studied by low-temperature cyclic voltammetry. Complex1 is stable in THF at a temperature lower than −50°C and undergoes reversible one-electron reduction to radical anion1 . −. Further one-electron reduction of1 . − to dianion1 2− is accompanied by the elimination of two Cl ions to form the bisindenyl sandwich [·5-(Ph)Ind]2Hf complex (2). This complex can undergo reversible one-electron reduction to the corresponding radical anion2 . −, which is stable within the cyclic voltammetry time scale. AtT=−30°C in a THF solution, complex1 was reduced to a diamagnetic (apparently, binuclear) HfIII complex, which was characterized by cyclic voltammetry. Synthesis and the crystal structure of complex1 are reported. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2161–2165, December, 1997.  相似文献   

10.
The structural geometries of three tripodal thiourea receptors, i.e. 1,3,5-triethyl-2,4,6-tris[(N′-methylthioureido)methyl]benzene (1), tris[N′-methyl-N-(2-aminoethyl)thiourea]methane (2), tris[N′-methyl-N-(2-aminoethyl)thiourea]amine (3), and their complexes with F, Cl, Br, I, NO3 , CO3 2−, SO4 2−, HSO4 , PO4 3−, HPO4 2− and H2PO4 were obtained using the density functional theory calculations. Electronic and thermodynamic properties of anion binding complexes of the receptors 1, 2 and 3 were investigated. Recognition abilities of all the receptors in terms of selectivity coefficients are reported. Intermolecular interactions in all the studied complexes occurring via multi-point hydrogen bonding were found. The receptors 1, 2 and 3 were found to be excellent selectivity for phosphate ion and their binding free energy for the phosphate ion are −292.57, −291.77 and −295.01 kcal/mol, respectively.  相似文献   

11.
The effect of the nature of substituents at sp2-hybridized silicon atom in the R2Si=CH2 (R = SiH3, H, Me, OH, Cl, F) molecules on the structure and energy characteristics of complexes of these molecules with ammonia, trimethylamine, and tetrahydrofuran was studied by the ab initio (MP4/6-311G(d)//MP2/6-31G(d)+ZPE) method. As the electronegativity, χ, of the substituent R increases, the coordination bond energies, D(Si← N(O)), increase from 4.7 to 25.9 kcal mol−1 for the complexes of R2Si=CH2 with NH3, from 10.6 to 37.1 kcal mol−1 for the complexes with Me3N, and from 5.0 to 22.2 kcal mol−1 for the complexes with THF. The n-donor ability changes as follows: THF ≤ NH3 < Me3N. The calculated barrier to hindered internal rotation about the silicon—carbon double bond was used as a measure of the Si=C π-bond energy. As χ increases, the rotational barriers decrease from 18.9 to 5.2 kcal mol−1 for the complexes with NH3 and from 16.9 to 5.7 kcal mol−1 for the complexes with Me3N. The lowering of rotational barriers occurs in parallel to the decrease in D π(Si=C) we have established earlier for free silenes. On the average, the D π(Si=C) energy decreases by ∼25 kcal mol−1 for NH3· R2Si=CH2 and Me3N·R2Si=CH2. The D(Si←N) values for the R2Si=CH2· 2Me3N complexes are 11.4 (R = H) and 24.3 kcal mol−1 (R = F). sp2-Hybridized silicon atom can form transannular coordination bonds in 1,1-bis[N-(dimethylamino)acetimidato]silene (6). The open form (I) of molecule 6 is 35.1 and 43.5 kcal mol−1 less stable than the cyclic (II, one transannular Si←N bond) and bicyclic (III, two transannular Si←N bonds) forms of this molecule, respectively. The D(Si←N) energy for structure III was estimated at 21.8 kcal mol−1. Dedicated to Academician N. S. Zefirov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1952–1961, September, 2005.  相似文献   

12.
Summary.  Complexation of Rh(I) with o, o′-dimethylene-(tris-p-cresyl)-bicyclophosphite (BCP, 1) has been investigated in solution by NMR, semi-empirical quantum mechanical, and molecular mechanics calculations. 1H and 31P NMR spectroscopic data show that when the BCP/Rh ratio exceeds 2, Rh hydride complexes of the composition RhH(BCP)3 and RhH(BCP)4 are formed. The source of the hydride ion is the ligand itself; most probably, H originates from the bridging CH2 groups of BCP. The chemical shifts of these protons are sensitive to complexation due to the considerable electron density of HOMO and LUMO at one of the bridging CH2 moieties. Molecular mechanics simulations of the molecular structure of these complexes show that two cavities are formed in [Rh(BCP)3]+ by the aromatic rings of the ligands. These cavities may alternatively open and close, thus providing for a flexibly shielded catalytic site which explains the unusual catalytic behaviour of Rh complexes with BCP in hydrogenation and hydroformylation reactions. Received February 15, 2001. Accepted (revised) April 23, 2001  相似文献   

13.
Reactions of methane and hydrogen molecules with [(η5-C5H5)2ZrCH3]+ and (η5-C5H5)2ZrH3]+ cations were studied using nonempirical density functional theory (DFT). In all cases, the reactions begin with the formation of agostic complexes between the substrate molecules and1 or2. Transformation of these intermediates into transition states when moving along the reaction coordinate requires only slight changes in the geometry. The dihydrogen molecule reacts with1 exothermically (−8.8 kcal mol−1) and barrierlessly to form2 and CH4. Exchange of σ-bonded ligands in the1−CH4 system proceeds through a symmetric transition state with an activation energy of 15.0 kcal mol−1. According to calculations, organometallic ZrIV complexes are promising for activation of C−H and H−H bonds under mild conditions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2248–2254, December, 1999.  相似文献   

14.
The alkoxido-titanium pentamolybdate [(iPrO)TiMo5O18]3− (1) has been obtained as its tetrabutylammonium (TBA) salt by hydrolysis of a mixture containing (TBA)2[Mo2O7], (TBA)4[Mo8O26] and Ti(OiPr)4 in MeCN and has been characterised by 1H, 13C, 17O, 49Ti and 95Mo NMR and FTIR spectroscopy, electrospray ionisation mass spectrometry, elemental microanalysis and single-crystal X-ray crystallography. The Lindqvist-type structure is derived from [Mo6O19]2− by replacement of {Mo=O}4+ by {(iPrO)Ti}3+ and shows bond alternation in the TiMo3O4 rings, with average bond distances of 1.956(8) ? for Ti–O(Mo), 1.832(7) ? for Mo–O(Ti), 1.943(7) ? for Moeq–O(Moax) and 1.910(6) ? for Moax–O(Moeq), while the increase in charge results in a decrease in 17O NMR chemical shift for terminal Mo=O groups from δ 933 for [Mo6O19]2− to δ 875 and 857 for 1 and a shift in νMo=O from 951 cm−1 for [Mo6O19]2− to 930 cm−1 for 1. The main peaks in the negative-ion electrospray ionisation mass spectrum of (TBA)3 1 could be assigned to ion aggregates containing 1 or fragments derived from 1, including {(TBA)2[(iPrO)TiMo5O18]}, {(TBA)[(iPrO)TiMo5O18]}2−, {(iPrO)TiMo2O8}, {TiMo5O18}2−, {TiMo4O15}2− and {Mo3O10}2−.  相似文献   

15.
The lower rim functionalized hexahomotrioxacalix[3]arene triamide 4 with cone-conformation was synthesized from triol 1 by a stepwise reaction. The different extractability for alkali metal ions, transition metal ions, and alkyl ammonium ions from water into dichloromethane is discussed. Due to the strong intramolecular hydrogen bonding between the neighboring NH and CO groups in triamide 4, its affinity to metal cations was weakened. Triamide 4 shows a single selectivity to n-BuNH3+. The anion complexation of triamide 4 was also studied by 1H NMR titration experiments. Triamide 4 binds halides through the intermolecular hydrogen bonding among the NH hydrogens of amide in a 1:1 fashion in CDCl3. The association constants calculated from these changes in chemical shifts of the amide protons are Ka = 223 M−1 for Cl and Ka = 71.7 M−1 for Br. Triamide 4 shows a preference for Cl complexation than Br complexation.  相似文献   

16.
Photolysis and thermal decomposition of betaines R3P−CR1R2−SiR3R4−S (1) follows two main pathways: (a) a Corey—Chaykovsky type reaction with elimination of Ph3P and generation of silathiirane (2) and (b) a retro-Wittig type reaction accompanied by elimination of R3P=CR1R2 and generation of silanethione R3R4Si=S (3). Highly reactive compounds2 and3 undergo subsequent transformations to give derivatives of tetrahydro-1,4-dithia-2,5-disilin, 1,3-dithia-2,4-disilolane, and phosphonium salts ofsymm-tetraorganodisilthiane dithiolates [Ph3P+CHR1R2]2[(R3R4SiS)2S]. The structures of the compounds obtained were established by X-ray diffraction analysis and multinuclear NMR spectroscopy. For part 3, see Ref. 1. The betaines Et3P+CHMeSiMe2S and Et3P+CHMeSiPh2S with alkyl groups at the phosphorus atom are distinguished by high thermal stability; their spectral characteristics do not change during storage of solutions of these compounds in pyridine-d5 or metastable solutions in benzene-d6 for 1–2 years at −20°C in sealed evacuated tubes or on heating (150°C) for 15 h. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1594–1603, September, 2000.  相似文献   

17.
Summary.  Several new lariat-crown ethers bearing either bridged bisdioxine or tetraoxaadamantane units as chiral substituents are prepared by reacting the corresponding amino-crown ether derivatives with the dimeric α-oxoketene, the latter obtained by flash vacuum pyrolysis of a furan-2,3-dione precursor. Complexation properties towards differently charged metal ions are investigated by 1H NMR titration to obtain complexation constants (K c -values for potassium/sodium rhodanides: 480–1100 mol dm−3), as well as extraction experiments to explore the metal ion transportation abilities of the new lariat crown derivatives. In particular, a significantly increased ability to transport metal ions from water into chloroform was found with spherical tetraoxaadamantyl derivatives when compared with the free amino-benzocrown ethers. Corresponding author. E-mail: kollenz@kfunigraz.ac.at Received July 5, 2002; accepted July 19, 2002  相似文献   

18.
Phase solubility techniques were used to obtain the complexation parameters of cisapride (Cisp) with β-cyclodextrin (β-CD) in aqueous 0.05 M citrate buffer solutions. From the UV absorption spectra and the pH solubility profile, two basic pK as were estimated: pK a(1+) = 8.7 and pK a(2+) < 2. The inherent solubility (S o) of Cisp was found to increase as pH decreases, but is limited by the solubility product of the CispH+·citrate1− salt at low pH (pK sp = 3.0). Cisp forms soluble 1:1 and 1:2 Cisp/β-CD complexes. A quantitative measure of the hydrophobic effect (desolvation) contribution to 1:1 complex formation was obtained from the linear variation of free energy of 1:1 Cisp/β-CD complex formation (ΔG 11 = −RT ln K 11 < 0) with that of the inherent solubility of Cisp . The results show that the hydrophobic character of Cisp contributes about 35% of the total driving force to 1:1 complex formation (slope = −0.35), while other factors, including specific interactions, contribute −10.6 kJ/mol (intercept). Protonated 1:1 Cisp/β-CD complex formation at pH 6.0 is driven by favorable enthalpy (ΔH° = −9 kJ/mol) and entropy (ΔS° = 51 J/mol K) changes. In contrast, inherent Cisp solubility is impeded by unfavorable enthalpy (ΔH° = 12 kJ/mol) and entropy (ΔS° = 90 J/mol K) changes. 1H-NMR spectra in D2O and molecular mechanical studies indicate the formation of inclusion complexes. The dominant driving force for neutral Cisp/β-CD complexation in vacuo was predominantly van der Waals with very little electrostatic contribution.  相似文献   

19.
Phase solubility diagrams (PSDs) and molecular mechanical (MM) modeling were used to study the complexation of hydrocortisone (HCor) with β-cyclodextrin (β-CD). The phase solubility profile of HCor with β-CD was classified as the Bs-type. PSDs revealed a six-fold increase in HCor water solubility upon addition of 7 mmol⋅dm−3 β-CD concentration (solubility in 7 mmol⋅dm−3 of β-CD/solubility in water). The thermodynamic study shows the complexation process is exothermic, with a ΔH value of −5.28 kJ⋅mol−1. MM calculations were used to predict the optimal stoichiometry of the complex formed as well as the possible orientations of HCor inside the β-CD cavity. The complexes prepared were analyzed through chemical analysis, which provides evidence for the 1:1 complexation of HCor/β-CD. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

20.
Theoretical investigations are carried out on the multichannel reactions CH3COCH3 + F (R1) and CH3COCH3 + Br (R2) by means of direct dynamics methods. The minimum energy path (MEP) is obtained at the MP2/6-31 + G(d,p) level, and energetic information is further refined at the MC-QCISD (single-point) level. The rate constants are calculated by the improved canonical variational transition-state theory (ICVT) with the small-curvature tunneling (SCT) contributions in a wide temperature range 200–1,500 K for the title reactions, H-abstraction channel is favored for the two reactions. The theoretical overall rate constants are in good agreement with the available experimental data and are found to be k 1a  = 3.22 × 10−15 T 1.51exp(1,190.91/T) cmmolecule−1 s−1, k 2  = 5.95 × 10−18 T 1.98exp(−4,622.45/T) cmmolecule−1 s−1. Furthermore, the rate constants of reaction Cl + CH3COCH3 (R3) calculated in the other paper are added to discuss the reactivity trend of different halogen reaction with acetone on the rate constants of this class of hydrogen abstraction reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号