首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibiotic resistance has prompted the search for new agents that can inhibit bacterial growth. We recently reported on the antibiofilm activities of nanosized ZnO and CuO nanoparticles (NPs) synthesized by using sonochemical irradiation. In this study, we examined the antibacterial activity of ZnO and CuO NPs in a powder form and also examined the antibiofilm behavior of teeth surfaces that were coated with ZnO and CuO NPs using sonochemistry. Free ZnO and CuO NPs inhibited biofilm formation of Streptococcus mutans . Furthermore, by using the sonochemical procedure, we were able to coat teeth surfaces that inhibited bacterial colonization.  相似文献   

2.
Synthesis of pure Zinc oxide (ZnO), Copper oxide (CuO) nanoparticles (NPs) and their (ZnO/CuO) nanocomposites (NCs) in 1:1 M ratio were successfully prepared by co-precipitation method. The structural properties of the as synthesized nanoparticles and nanocomposite materials were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Optical band-gap studies were done using UV–Visible absorption spectroscopy. Photovoltaic properties of pure ZnO NPs, CuO NPs and ZnO/CuO NCs coated over a single-crystalline silicon solar cell were carried out to compare improvement of light-conversion efficiency in coated solar cell. The maximum light conversion efficiencies were found to be of 8.02% for CuO (3 mg/ml concentration) and 7.28% for ZnO NPs (3 mg/ml concentration), whereas that of mixed metal nanocomposite CuO/ZnO NCs was found to be 7.62%. at very low concentration of 1 mg/ml. This indicates with low concentration of mixed metal NCs an improvement in light efficiency can be obtained. The enhancement in efficiency could be due to formation of p - n heterojunction by CuO/ZnO NCs composites which enhances the number of electrons and holes participating in conduction on the surface.  相似文献   

3.
采用低温水热法在掺氟SnO2 (FTO)导电玻璃表面制备ZnO纳米阵列, 研究了前驱体溶液浓度摩尔配比对ZnO纳米阵列形貌、光学性能及其生长机理的影响. 研究发现, 随着前驱体溶液浓度摩尔配比的增加, ZnO纳米阵列形貌及光学性能也随之变化. ZnO纳米阵列高度逐渐降低, ZnO纳米阵列直径和光学带隙值大体上出现先增大后降低的趋势. 而当前驱体溶液(Zn(NO3)2:环六亚甲基四胺(HMT, C6H12N4))浓度摩尔配比为5:5时, 其光学禁带值(3.2 eV)接近于理论值. 结果显示制备ZnO纳米阵列的最优浓度摩尔配比为5:5. 随后选用最优浓度摩尔配比下制备的ZnO纳米阵列为基底, 通过一种两步溶液法成功在其表面制备刺突状CuO/ZnO异质结.从场发射扫描电镜(FE-SEM)结果中可以清楚看见, 大量的CuO纳米粒子沉积在ZnO纳米阵列表面形成刺突状异质结结构.研究发现该CuO/ZnO纳米异质结相对于纯ZnO纳米阵列在紫外光下光催化性能明显增加. 最后, 讨论了CuO/ZnO纳米异质结光催化机理.  相似文献   

4.
We report the effect of dispersion of zinc oxide (ZnO) nanoparticles (NPs) on the conductivity, birefringence and fluorescence properties of commercially available room temperature nematic liquid crystal (LC) with the variation of dopant concentration. Significant changes have been observed in transition enthalpy, DC conductivity, photoluminescence and birefringence values of the LC material by the addition of ZnO NPs. While the inclusion of NPs enhances the electrical conductivity of the composite system, it results in a reduction in the birefringence value, which can be attributed to a decrease in the order parameter of the system due to the perturbed geometry of the LC. This also results in the increase in threshold voltage value, which has been speculated as due to the piezoelectric nature of the ZnO NPs. The analysis of the fluorescence spectrum indicates that ZnO NPs enhance the intensity in the LC phase along with a small blue shift.  相似文献   

5.
ABSTRACT

We are reporting on the interaction of zinc oxide (ZnO) nanoparticles (NPs) with the lyotropic phase comprises of Polyoxyethylene (20) sorbitan monolaurate and protic solvent ethylene glycol. The concentration of the NPs has been varying from 0.05 to 0.5 wt%. Multiwall lamellar and inverse phases have been observed at lower and higher concentration of ZnO NPs doping. Interestingly, the organization of ZnO NPs on the periphery and inside the periphery of ring-like structures has been observed at lower and higher concentration of the dopant, respectively. Such organization of the NPs can be explained considering interfacial interaction amid host and dopant and may also attribute to the adsorption mechanisms of surfactant. Effects of NPs doping on the dielectric dynamics has also been examined. About 32.6% decrease in the dielectric permittivity has been noticed at higher NPs doping. Such decrement in permittivity could be a result of the screening of the ZnO NPs dipole moment by the adsorption of surfactant molecules on their surface. Relaxation and optical parameters of the non-doped and doped mixtures have also been discussed.  相似文献   

6.
The progress in nanomedicine (NM) using nanoparticles (NPs) is mainly based on drug carriers for the delivery of classical chemotherapeutics. As low NM delivery rates limit therapeutic efficacy, an entirely different approach was investigated. A homologous series of engineered CuO NPs was designed for dual purposes (carrier and drug) with a direct chemical composition–biological functionality relationship. Model-based dissolution kinetics of CuO NPs in the cellular interior at post-exposure conditions were controlled through Fe-doping for intra/extra cellular Cu2+ and biological outcome. Through controlled ion release and reactions taking place in the cellular interior, tumors could be treated selectively, in vitro and in vivo. Locally administered NPs enabled tumor cells apoptosis and stimulated systemic anti-cancer immune responses. We clearly show therapeutic effects without tumor cells relapse post-treatment with 6 % Fe-doped CuO NPs combined with myeloid-derived suppressor cell silencing.  相似文献   

7.
Plant-based nanoparticles (NPs) have found great interest among various scientist in the present era and used in various sector including medicine, agriculture, and food industry. The various chemical constituents of plants aid in the bioreduction of metal ions to a nanoscale. Among the various NPs synthesized, zinc oxide (ZnO) NPs hold a premier position. ZnO NPs have use in textile, cosmetic, diagnostics, optoelectronics, photocatalysis, diodes, and many other areas. NPs synthesized through green synthesis have a potentially greater role in treating clinical pathogens. Present investigations show a simple eco-friendly method for the synthesis of ZnO NPs from the husk of sunflower seeds. Sunflower is an economically important crop, for the formation of edible oil. The husk is considered to be a waste, product in oil industry, however, the biomolecules present in sunflower husk can be used to produce ZnO NPs. Present investigations reveal formation of ZnO NPs and investigations of their structure through scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Their optical properties have been studied by ultraviolet–visible spectrophotometer (UV–Vis) and fluorophotometer. ZnO NPs have also been investigated for their potential phytoremedial properties.  相似文献   

8.
Glioblastoma multiforme (GBM) is the most aggressive malignant tumor of the brain. It has different glutamate receptor types. So, these receptors can be a suitable target for GBM treatment. The current study investigated the anticancer effects of bovine serum albumin (BSA)-Baicalein @Zn-Glu nanostructure mediated-GluRs in human glioblastoma U87 cells. BSA-Ba@Zn-Glu hybrid nanoparticles (NPs) were set and considered transporters for Baicalein (Ba) active compound delivery. BSA-Ba@Zn-Glu NPs were synthesized by a single-step reduction process. The successful production was confirmed through transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), and hemolysis test. The cytotoxic efficacy and apoptosis rate of the nanostructures on U87 glioblastoma cells were investigated by 3-(4,5-dimethylthialzol-a-yl)-2,5 diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. The synthesized BSA-Ba@Zn-Glu nanostructures with a diameter of 142.40 ± 1.91 to 177.10 ± 1.87 nm and zeta potential of −10.57 ± 0.71 to −35.77 ± 0.60 mV are suitable for extravasation into tumor cells. The drug release from the BSA-Ba@Zn NPs showed controlled and pH-dependent behavior. In vitro results indicated that the BSA-Ba@Zn-Glu NPs significantly reduce cell viability and promote apoptosis of U87 cancer cells. It revealed the cytotoxic effect of the Baicalein and an increase in cellular uptake of nanoparticles by Glu receptors. Zn NPs were synthesized based on a green synthesis method. BSA NPs were used as a nano-platform for Glu conjugation and Ba drug delivery. BSA-Ba@Zn-Glu NPs induce cytotoxicity and apoptosis in human brain cancer cells (U87) in a dose-dependent manner. Finally, this nanostructure could be served in targeted drug delivery in vivo studies and applied along with other strategies such as X-ray irradiation as combinational therapies in future studies.  相似文献   

9.
10.
The progress in nanomedicine (NM) using nanoparticles (NPs) is mainly based on drug carriers for the delivery of classical chemotherapeutics. As low NM delivery rates limit therapeutic efficacy, an entirely different approach was investigated. A homologous series of engineered CuO NPs was designed for dual purposes (carrier and drug) with a direct chemical composition–biological functionality relationship. Model‐based dissolution kinetics of CuO NPs in the cellular interior at post‐exposure conditions were controlled through Fe‐doping for intra/extra cellular Cu2+ and biological outcome. Through controlled ion release and reactions taking place in the cellular interior, tumors could be treated selectively, in vitro and in vivo. Locally administered NPs enabled tumor cells apoptosis and stimulated systemic anti‐cancer immune responses. We clearly show therapeutic effects without tumor cells relapse post‐treatment with 6 % Fe‐doped CuO NPs combined with myeloid‐derived suppressor cell silencing.  相似文献   

11.
Toxicological effect of ZnO nanoparticles based on bacteria   总被引:1,自引:0,他引:1  
Streptococcus agalactiae and Staphylococcus aureus are two pathogenetic agents of several infective diseases in humans. Biocidal effects and cellular internalization of ZnO nanoparticles (NPs) on two bacteria are reported, and ZnO NPs have a good bacteriostasis effect. ZnO NPs were synthesized in the EG aqueous system through the hydrolysis of ionic Zn2+ salts. Particle size and shape were controlled by the addition of the various surfactants. Bactericidal tests were performed in an ordinary broth medium on solid agar plates and in liquid systems with different concentrations of ZnO NPs. The biocidal action of ZnO materials was studied by transmission electron microscopy of bacteria ultrathin sections. The results confirmed that bactericidal cells were damaged after ZnO NPs contacted with them, showing both gram-negative membrane and gram-positive membrane disorganization. The surface modification of ZnO NPs causes an increase in membrane permeability and the cellular internalization of these NPs whereas there is a ZnO NP structure change inside the cells.  相似文献   

12.
A systematic experimental and theoretical study of the origin of the enhanced photocatalytic performance of Mg‐doped ZnO nanoparticles (NPs) and Mg‐doped ZnO/reduced graphene oxide (rGO) nanocomposites has been performed. In addition to Mg, Cd was chosen as a doping material for the bandgap engineering of ZnO NPs, and its effects were compared with that of Mg in the photocatalytic performance of ZnO nanostructures. The experimental results revealed that Mg, as a doping material, recognizably ameliorates the photocatalytic performance of ZnO NPs and ZnO/graphene nanocomposites. Transmission electron microscopy (TEM) images showed that the Mg‐doped and Cd‐doped ZnO NPs had the same size. The optical properties of the samples indicated that Cd narrowed the bandgap, whereas Mg widened the bandgap of the ZnO NPs and the oxygen vacancy concentration was similar for both samples. Based on the experimental results, the narrowing of the bandgap, the particle size, and the oxygen vacancy did not enhance the photocatalytic performance. However, Brunauer–Emmett–Teller (BET) and Barret–Joyner–Halenda (BJH) models showed that Mg caused increased textural properties of the samples, whereas rGO played an opposite role. A theoretical study, conducted by using DFT methods, showed that the improvement in the photocatalytic performance of Mg‐doped ZnO NPs was due to a higher electron transfer from the Mg‐doped ZnO NPs to the dye molecules compared with pristine ZnO and Cd‐doped ZnO NPs. Moreover, according to the experimental results, along with Mg, graphene also played an important role in the photocatalytic performance of ZnO.  相似文献   

13.
Low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O nanopowders(NPs)would determine their practical application in purifying wastewater.In this contribution,ZnO NPs were scalably synthesized via the simple reaction of Zn powder with H_2O vapor in autoclave.The structural,morphological and optical properties of the samples were systematically characterized by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectra,transmission electron microscopy,Micro-Raman,photoluminescence,and ultraviolet-visible spectroscopy.The as-prepared Zn O NPs are composed of nanoparticles with 100–150 nm in diameter,and have a small Brunauer-Emmett-Teller surface area of 6.85 m~2/g.The formation of Zn O nanoparticles is relative to the peeling of H_2 release.Furthermore,the product has big strain-stress leading to the red-shift in the band gap of product,and shows a strong green emission centered at 515 nm revealing enough atomic defects in Zn O NPs.As a comparison with P25,the obtained dust gray Zn O NPs have a strong absorbance in the region of 200–700 nm,suggesting the wide wave-band utilization in sunlight.Based on the traits above,the Zn O NPs show excellent photocatalytic activity on the degradation of rhodamine B(Rh-B)under solar light irradiation,close to that under UV irradiation.Importantly,the Zn O NPs could be well recycled in water due to the quick sedimentation in themselves in solution.The low-cost and scalable preparation,high photocatalytic activity,and convenient recycle of Zn O NPs endow themselves with promising application in purifying wastewater.  相似文献   

14.
本文用程序升温还原和电导平行测定方法考察了载体SnO_2、ZnO和Al_2O_3及金属Pd对CuO还原行为的影响。结果表明, SnO_2、ZnO等载体的电子性质对担载的CuO的还原有重要作用, 在H_2气氛下具有n-型半导性的载体可作为电子中继物, 可有效地促进CuO的还原。  相似文献   

15.
The potential effects of nanoscale CuO(nCuO),nanoscale ZnO(nZnO)and their mixtures on Daphnia magna were investigated,including 48-h acute toxicity and 21-d chronic toxicity tests as well as a feeding ...  相似文献   

16.
(1) Background: The obesity epidemic has been drastically progressing in both children and adults worldwide. Pharmacotherapy is considered necessary for its treatment. However, many anti-obesity drugs have been withdrawn from the market due to their adverse effects. Instead, natural products (NPs) have been studied as a source for drug discovery for obesity, with the goal of limiting the adverse effects. Zebrafish are ideal model animals for in vivo testing of anti-obesity NPs, and disease models of several types of obesity have been developed. However, the evidence for zebrafish as an anti-obesity drug screening model are still limited. (2) Methods: We performed anti-adipogenic testing using the juvenile zebrafish obesogenic test (ZOT) and mouse 3T3-L1 preadipocytes using the focused NP library containing 38 NPs and compared their results. (3) Results: Seven and eleven NPs reduced lipid accumulation in zebrafish visceral fat tissues and mouse adipocytes, respectively. Of these, five NPs suppressed lipid accumulation in both zebrafish and 3T3-L1 adipocytes. We confirmed that these five NPs (globin-digested peptides, green tea extract, red pepper extract, nobiletin, and Moringa leaf powder) exerted anti-obesity effects in diet-induced obese adult zebrafish. (4) Conclusions: ZOT using juvenile fish can be a high-throughput alternative to ZOT using adult zebrafish and can be applied for in vivo screening to discover novel therapeutics for visceral obesity and potentially also other disorders.  相似文献   

17.
ZnO/CuO heterohierarchical nanotrees array has been prepared via a simple hydrothermal approach combined with thermal oxidation method on Cu substrates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometer(XRD) are employed to characterize and analyze the as-synthesized samples. The results demonstrate that the secondary growth of ZnO nanorods enclose with CuO nanowires, leading to the formation of ZnO/CuO heterohierarchical nanotrees array. The hierarchical nanostructures have isotropic crystal symmetry and they have no 6-fold (or 4-fold or 2-fold) symmetry as general epitaxial growth. Enlightened by the similarity with microstructure of lotus, the wettability of ZnO/CuO heterohierarchical nanotrees array has been investigated. It is revealed that as-prepared ZnO/CuO nanotrees array after silanization present remarkable superhydrophobic performance, which is attributed to the trapped air and hierarchical roughness. Furthermore, their wettability could be manipulated by the morphologies of hierarchical ZnO nanorods. At the optimal condition, the greatest static angle of water droplet on the obtained heterohierarchical nanotrees array could reach almost 170°, and this substrate could be used as self-cleaning surface.  相似文献   

18.
At present, inorganic semiconducting materials are the most economical and viable source for the renewable energy industry. The present work deals with the morphological and optical characterization of copper oxide (CuO) and zinc oxide (ZnO) thin films fabricated by layer by layer deposition on nickel oxide (NiO) coated indium tin oxide (ITO) glass by solution processing methods, mainly chemical bath deposition (CBD) and hydrothermal deposition (HTD) processes at room temperature. As a whole, the above inorganic composite materials (NiO/CuO/ZnO) can be applied in photovoltaic cells. An attempt has been made to study structural, morphological and absorption characteristics of NiO/CuO/ZnO heterojunction using state of the art techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV spectroscopy. The energy band gaps of CuO and ZnO have also been calculated and discussed based on the UV spectroscopy measurements.  相似文献   

19.
The global pandemic of COVID-19 had a consequential impact on our lives. (Hydroxy)chloroquine, a well-known drug for treatment or prevention against malaria and chronic inflammatory conditions, was also used for COVID patients with reported potential efficacy. Although it was well tolerated, however in some cases, it produced severe side effects, including grave cardiac issues. The variable reports on the administration of (hydroxy)chloroquine in COVID19 patients led to chaos. This drug is a well-known zinc ionophore, besides possessing antiviral effects. Zinc ionophores augment the intracellular Zn2+ concentration by facilitating the zinc ions into the cells and subsequently impair virus replication. Zinc oxide nanoparticles (ZnO NPs) have been reported to possess antiviral activity. However, the adverse effects of both components are also reported. We discussed in depth their possible mechanism as antiviral and smart delivery perspectives through pH-sensitive polymers/ micelles and ZnO NPs.  相似文献   

20.
Abstract

An efficient approach has been reported that 1-aryl-5-amino-1H-tetrazoles are prepared from structurally diverse N-arylcyanamides and sodium azide using sono/nano-catalytic system. The mixed metal oxide nanoparticles (NPs) (CuO, NiO, and ZnO NPs) were prepared with utilizing aqueous leaves extracts of the Rheum ribes. In this study, the effect of the reaction condition was investigated on the catalytic activity and selectivity of mixed metal oxide NPs for the synthesis of aminotetrazole derivatives. In this regard, various reaction conditions were precisely compared such as reflux and ultrasonication (US). In this study, the regioselective synthesis of 1-aryl-5-amino-1H-tetrazoles with high yield was achieved by the synergistic effect between US irradiation and prepared nanocatalyst which showed the potential of sono/nano-catalytic system in organic synthesis. Furthermore, the as-prepared nanocatalyst could be reused and recovered from the reaction mixture for several times without consequential abate in its catalytic activity and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号